Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T01:13:20.587Z Has data issue: false hasContentIssue false

The nature of residual stress, defects, and device characteristics for thick single-crystalline Si films on oxidized Si wafers

Published online by Cambridge University Press:  31 January 2011

L. E. Trimble
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
G. K. Celler
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
D. G. Schimmel
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
C. Y. Lu
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
S. Nakahara
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
P. M. Fauchet
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Recently it was reported that high quality, 10–100 μm thick, single-crystalline Si films were formed on oxidized single-crystalline Si wafers by the lateral epitaxial growth over oxide (LEGO) process. Although this recrystallization process is reliable and reproducible, periodic regions of dislocations in the otherwise relatively dislocation-free Si film were not well understood. In this paper, therefore, the film stress and defect properties are investigated in detail, and devices made in recrystallized wafers are compared with devices in conventional wafer structures. Stress levels were found to be too low to cause defects, with TEM data suggesting an impurity mechanism (SiO2 precipitation) for small dislocation loops and slight crystalline misorientation for long dislocation lines in the periodic, defective areas. Device results confirmed that LEGO is a viable alternative to the dielectric isolation (DI) technology.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Celler, G. K., Robinson, McD., and Lischner, D. J., Appl. Phys. Lett. 42, 99 (1983).CrossRefGoogle Scholar
2Celler, G. K., Robinson, McD., and Trimble, L. E., J. Electrochem. Soc. 132, 211 (1985).CrossRefGoogle Scholar
3Trimble, L. E., M.Sc. thesis, Stevens Institute of Technology, Hoboken, New Jersey, 1986.Google Scholar
4Tsaur, B.-Y., Fan, J. C. C., and Geis, M. W., Appl. Phys. Lett. 40, 322 (1982).Google Scholar
5Fan, J. C. C., Tsaur, B.-Y., and Geis, M. W., J. Cryst. Growth 63, 453 (1983).Google Scholar
6Meyer, W. G., Dick, G. W., Olson, K. H., Lee, K. H., and Shimer, J. A., IEEE IEDM Tech. Digest 30.3, 732 (1985).Google Scholar
7Bean, K. E. and Runyan, W. R., J. Electrochem. Soc. 124, 5C (1977).CrossRefGoogle Scholar
8Roy, P. K., U. S. Patent No. 4, 631, 804 (30 December 1986).Google Scholar
9Fauchet, P. M., IEEE Circs. Devs. Mag. 2, 37 (1986).CrossRefGoogle Scholar
10Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 454.Google Scholar
11Brantly, W. A., J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
12Englert, Th. and Abstreiter, G., Solid-State Electron. 23, 31 (1980).CrossRefGoogle Scholar
13Zorabedian, P. and Adar, F., Appl. Phys. Lett. 43, 177 (1983).CrossRefGoogle Scholar
14Stoney, G. G., Proc. R. Soc. London A 82, 172 (1909).Google Scholar
15Jaccodine, R. J. and Schlegel, W. A., J. Appl. Phys. 37, 2429 (1966).CrossRefGoogle Scholar
16Whelan, M. V., Goemans, A. H., and Goossens, L. M. C., Appl. Phys. Lett. 10, 262 (1967).CrossRefGoogle Scholar
17Irene, E. A., Tierney, E., and Angilello, J., J. Electrochem. Soc. 129, 2594 (1982).CrossRefGoogle Scholar
18Sylwestrowicz, W. D., Philos. Mag. 7, 1825 (1962).Google Scholar
19Leroy, B. and Plougonven, C., J. Electrochem. Soc. 127, 961 (1980).CrossRefGoogle Scholar
20Pfeiff'er, L., Kovacs, T., and West, K. W., Appl. Phys. Lett. 47, 157 (1985).Google Scholar
21Lin, W. and Hill, D. W., J. Appl. Phys. 54, 1082 (1983).CrossRefGoogle Scholar
22Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981), 2nd ed., Chap. 8, p. 431.Google Scholar
23Lu, C. Y., Tsai, N. S., Dunn, C. N., Riffe, P. C., Shibib, M. A., Furnanage, R. A., and Goodwin, C. A., IEEE Trans. Elect. Devs. 35, 230 (1988).CrossRefGoogle Scholar
24Suzuki, T., Mimura, A., and Ogawa, T., J. Electrochem. Soc. 124, 1776 (1977).Google Scholar