Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T23:19:52.571Z Has data issue: false hasContentIssue false

The nature of residues following the ashing of arsenic implanted photoresist

Published online by Cambridge University Press:  31 January 2011

Clifton W. Draper
Affiliation:
Bell Laboratories, P.O. Box 900, Princeton, New Jersey 08542
Chuck W. Pearce
Affiliation:
Lucent Technologies, 555 Union Boulevard, Allentown, Pennsylvania 18103
Jere T. Glick
Affiliation:
Lucent Technologies, 555 Union Boulevard, Allentown, Pennsylvania 18103
Mike Gordon
Affiliation:
SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741
Gwen E. Olness
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Steven L. Bernasek
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

Extensive analytical characterization indicates that the most significant contaminant following dry processing of As-implanted photoresist is not a carbon-based residue, but is in fact arsenic itself. The arsenic residue is an amorphous form of elemental arsenic, relatively free of oxygen or carbon, that is stable for long periods of time. Since arsenic is not particularly soluble in sulfuric acid, hydrogen peroxide, or their mixtures, it makes sense to pose questions regarding the optimum choice for post-dry processing wet chemical cleans.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Burggraaf, P., Semiconductor International, 6669 (June 1992).Google Scholar
2.Dugger, D. L., Stern, M. B., and Rubico, T. M., in Beam Processing, edited by Cheung, N. W., Marwick, A. D., and Roberts, J. B. (Mater. Res. Soc. Symp. Proc. 147, Pittsburgh, PA, 1989), p. 385.Google Scholar
3.Okuyama, Y., Hashimoto, T., and Koguchi, T., J. Electrochem. Soc. 125, 1293 (1978).CrossRefGoogle Scholar
4.Roche, D., Michaud, J. F., and Bruel, M., in Ion Beam Processes in Advanced Electronic Materials and Device Technology, edited by Appleton, B. R., Eisen, F. H., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 45, Pittsburgh, PA, 1985), p. 203.Google Scholar
5.Orvek, K. J. and Huffman, C., Nucl. Instrum. Methods Phys. Res. B 7/8, 501 (1985).CrossRefGoogle Scholar
6.Larson, L. A., Nucl. Instrum. Methods Phys. Res. B 55, 132 (1991).CrossRefGoogle Scholar
7.Borden, P., Microcontamination, 4349 (April 1991).Google Scholar
8.Woods, R. E., Glick, J. T., Moerschel, K. G., and Chung, B. C., internal Bell Labs report.Google Scholar
9.Peters, L., Semiconductor International, 5864 (February 1992).Google Scholar
10.Yegnasubramanian, S., Draper, C. W., and Pearce, C. W., in Materials Reliability in Microelectronics II, edited by Thompson, C. V. and Lloyd, J. R. (Mater. Res. Soc. Symp. Proc. 265, Pittsburgh, PA, 1992), p. 295.Google Scholar
11.Barson, F., IEEE J. Solid-State Circuits 11, 505 (1976).CrossRefGoogle Scholar
12.Takizawa, R., Nakanishi, T., and Ohsawa, A., J. Appl. Phys. 62, 4933 (1987).CrossRefGoogle Scholar
13.Streckfuß, N., et al., Fresenius, J.Anal. Chem. 343, 765 (1992).CrossRefGoogle Scholar
14.Rigaku, J. 9 (1), 29 (1992).Google Scholar
15.Olness, G., Ph.D. Dissertation, Princeton University, 1994.Google Scholar
16.Kikuchi, M. and Bersin, R., Jpn. J. Appl. Phys. 31, Part 1, 2035 (1992).CrossRefGoogle Scholar
17.Lettire, K. C., Microelectronic Manufacturing and Testing, September 1987.Google Scholar
18.Honig, R. E. and Kramer, D. A., RCA Rev. 30, 285 (1969).Google Scholar
19.Stevenson, F. D. and Wicks, C. E., U.S. Dept. of the Interior, Bureau of Mines, Report of Investigations, 6212, “Vapor Pressure of Arsenic III Oxide,” 1963, 19 pp.Google Scholar
20.Stull, D. R. and Prophet, H., JANAF Thermodynamic Tables, 2nd ed., NBS, Washington, DC, 1971.Google Scholar
21.Draper, C. W., Anyanwu, V. E., Eisenberg, J. H., Felton, G. J., Roy, P. K., Chittipeddi, S., Bechtold, P. F., Hagner, G., Cooper, D., Syverson, D., Witowski, B., Van Eck, B., and Gordon, M., Proceed. of Electro. Chem. Soc. 94–97, 392 (1994).Google Scholar
22.Ta, T., SEMATECH 92101348A-ENG, Asher Damage and Contamination, December 4, 1992, 20 pp.Google Scholar
23.Craigin, B., Parks, H. G., and Schrimpf, R. D., Journal version of SRC Pub C92412.Google Scholar
24.Bartoszek, E. J., Polymers and Plastics Additives Group R&D Manager, Elf Atochem North America, Inc., private communication.Google Scholar
25.Surface Chemical Cleaning and Passivation for Semiconductor Processing, edited by Higashi, G. S., Irene, E. A., and Ohmi, T. (Mater. Res. Soc. Symp. Proc. 315, Pittsburgh, PA, 1993), 518 pp. and references cited therein.Google Scholar