Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:13:42.143Z Has data issue: false hasContentIssue false

New approach to the double melting peak of poly(l-lactic acid) observed by DSC

Published online by Cambridge University Press:  06 March 2012

Carlos A. Gracia-Fernández
Affiliation:
Thermal Analysis, Rheology and Microcalorimetry Applications, TA Instruments – Waters Cromatografía, 28108 Alcobendas Madrid, Spain
Silvia Gómez-Barreiro
Affiliation:
Department of Applied Physics, CESUGA, University College of Dublin, 15190 A Coruña, Spain
Jorge López-Beceiro
Affiliation:
University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
Salvador Naya
Affiliation:
University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
Ramón Artiaga*
Affiliation:
University of A Coruña, Higher Polytechnic School, Campus de Esteiro, Ferrol 15403, Spain
*
a)Address all correspondence to this author. e-mail: ramon.artiaga@udc.es
Get access

Abstract

Poly(l-lactic acid) (PLLA) is one of the most studied biopolymers nowadays. Due to its good performance, it constitutes an alternative to petrochemical-derived polymers. It was largely studied by differential scanning calorimetry (DSC) and temperature-modulated DSC. Nevertheless, there is an ongoing debate of what happens at the overlapping melting processes. In the present work, the experimental setups are discussed. Different modulation conditions are proposed for the study of the glass transition, cold crystallization, and the two reported melting processes. Finally, the experimental results allowed to measure the heat capacity change at the cold crystallization and a correct interpretation of what happens at the reported double melting peak of PLLA, which involves the existence of three crystalline structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abe, H., Kikkawa, Y., Inoue, Y., and Doi, Y.: Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules 2, 1007 (2001).CrossRefGoogle ScholarPubMed
2.Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63 (2001).Google Scholar
3.Vainiopaa, S., Rokkanem, P., and Tormala, P.: Surgical applications of biodegradable polymers in human tissue. Prog. Polym. Sci. 14, 679 (1989).CrossRefGoogle Scholar
4.Baratian, S., Hall, E.S., Lin, J.S., Xu, R., and Runt, J.: Crystallization and solid-state structure of random polylactide copolymers: Poly(l-lactide-co-d-lactide)s. Macromolecules 34, 4857 (2001).CrossRefGoogle Scholar
5.Huang, J., Lisowski, M.S., Runt, J., Hall, E.S., Ken, R.T., Buehler, N., and Lin, J.S.: Crystallization and microstructure of poly(l-lactide-co-meso-lactide) copolymers. Macromolecules 31, 2593 (1998).Google Scholar
6.Loomis, G.L., Murdoch, J.R., and Gardner, K.H.: Polylactide stereocomplexes. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 31, 55 (1990).Google Scholar
7.Zuza, E., Ugartemendia, J.M., López, A., Meaurio, E., Lejardi, A., and Sarasua, J.R.: Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer 49, 4427 (2008).Google Scholar
8.Pyda, M. and Wunderlich, B.: Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 38, 10472 (2005).Google Scholar
9.Wunderlich, B.: Reversible crystallization and the rigid amorphous phase in semicrystalline macromolecules. Prog. Polym. Sci. 28, 383 (2003).Google Scholar
10.Yasuniwa, M., Tsubakihara, S., Ohoshita, K., and Tokudome, S.: X-ray studies on the double melting behavior of poly(butylene terephthalate). J. Polym. Sci. Pt. B-Polym. Phys. 39, 2005 (2001).CrossRefGoogle Scholar
11.Yasuniwa, M., Tsubakihara, S., and Fujioka, T.: X-ray and DSC studies on the melt-recrystallization process of poly(butylene naphthalate). Thermochim. Acta 396, 75 (2003).CrossRefGoogle Scholar
12.Yasuniwa, M. and Satou, T.: Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J. Polym. Sci., Part B: Polym. Phys. 40, 2411 (2002).CrossRefGoogle Scholar
13.Qiu, Z., Komura, M., Ikehara, T., and Nishi, T.: DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 45, 7781 (2003).Google Scholar
14.Gunaratne, L.M.W.K., Shanks, R.A., and Amarasinghe, G.: Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 423, 127 (2004).Google Scholar
15.Gunaratne, L.M.W.K. and Shanks, R.A.: Thermal memory of poly(3-hydroxybutyrate) using temperature-modulated differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 44, 70 (2006).Google Scholar
16.Orozco, V.H., Brostow, W., Chonkaew, W., and López, B.L.: Preparation and characterization of poly(lactic acid)-g-maleic anhydride + starch blends. Macromol. Symp. 277, 69 (2009).CrossRefGoogle Scholar
17.Cebe, P. and Hong, S.D.: Crystallization behaviour of poly(ether-ether-ketone). Polymer 27, 1183 (1986).CrossRefGoogle Scholar
18.Bassett, D.C., Olley, R.H., and Raheil, I.A.M.: On crystallization phenomena in PEEK. Polymer 29, 1745 (1988).Google Scholar
19.Lee, Y., Porter, R.S., and Lin, J.S.: On the double-melting behavior of poly(ether ether ketone). Macromolecules 22, 1756 (1989).Google Scholar
20.Jonas, A.M., Russell, T.P., and Yoon, D.Y.: Synchrotron x-ray scattering studies of crystallization of poly(ether-ether-ketone) from the glass and structural changes during subsequent heating-cooling processes. Macromolecules 28, 8491 (1995).Google Scholar
21.Artiaga, R., Lopez-Beceiro, J., Tarrio-Saavedra, J., Gracia-Fernandez, C., Naya, S., and Mier, J.L.: Estimating the reversing and non-reversing heat flow from standard DSC curves in the glass transition region. J. Chemometr. 25, 287 (2011).CrossRefGoogle Scholar
22.López-Beceiro, J., Gracia-Fernández, C., Gómez-Barreiro, S., Castro-García, S., Sánchez-Andújar, M., and Artiaga, R.: Kinetic study of the low temperature transformation of Co(HCOO)3[(CH3)2NH2]. J. Phys. Chem. C 116, 1219 (2012).CrossRefGoogle Scholar