Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:27:27.016Z Has data issue: false hasContentIssue false

A new insight on alkaline hydrolysis of calcium aluminate cement concrete: Part I. Fundamentals

Published online by Cambridge University Press:  31 January 2011

S. Goñi
Affiliation:
Institute of Construction Science Eduardo Torroja (CSIC), c/Serrano Galvache s/n, 28033 Madrid, Spain
C. Andrade
Affiliation:
Institute of Construction Science Eduardo Torroja (CSIC), c/Serrano Galvache s/n, 28033 Madrid, Spain
J. L. Sagrera
Affiliation:
Institute of Construction Science Eduardo Torroja (CSIC), c/Serrano Galvache s/n, 28033 Madrid, Spain
M. S. Hernández
Affiliation:
Institute of Construction Science Eduardo Torroja (CSIC), c/Serrano Galvache s/n, 28033 Madrid, Spain
C. Alonso
Affiliation:
Institute of Construction Science Eduardo Torroja (CSIC), c/Serrano Galvache s/n, 28033 Madrid, Spain
Get access

Abstract

In this work a hypothesis to explain the alkaline hydrolysis degradation process of calcium aluminate cement concrete (CACC) is presented. The hypothesis is based on x-ray diffraction (XRD) data of some samples taken from real Spanish CACC structures. The identification from XRD data of a hydrated alkaline aluminate could serve as a guide to differentiate both processes of normal carbonation and alkaline hydrolysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neville, A., High Alumina Cement Concrete (The Construction Press, Great Britain, 1975).Google Scholar
2.Rehm, G., Zement-Kalk-Gips 17 (3), March (1964).Google Scholar
3. Ministers für Landesplanung, Wohnungsbau und offentliche arbeiten NordrheinWestfalen, Verwendung von Tonerdeschmelzzement. Publication IIB2–2323, No. 179/62, Ministerialblatt NRW, issue A15 (95), 1413 (1962).Google Scholar
4.Bate, S. C. C., Report on the failure of roof beams at Sir John Cass's Foundation and Red Coat Church of England Secondary School, Stepney, BRE CP 58, 18 (1974).Google Scholar
5.Department of Education and Science, Report on the collapse of the roof of the assembly hall of the Camden School for Girls (H.M.S.O., London, BRE, 16 1973).Google Scholar
6.Lea, F. M., Trans. Soc. Chem. Ind. 59, 18 (1940).Google Scholar
7.Stiglitz, P., Silicates Industriels, 93 (1972).Google Scholar
8.George, C. M., Mater. Constr. 701, 201 (1976).Google Scholar
9.del Olmo, C., Revista Iberoamericana de Corrosión y Protección, April, 201 (1976).Google Scholar
10.Vázquez, T., Triviño, F., and Ruiz de Gauna, A., Monography at the Eduardo Torroja Institute, IccET, No. 334 (1976).Google Scholar
11.ITEC, Recomendaciones para el reconocimiento sistemático y la diagnosis rápida de viguetas construídas con cemento aluminoso, Generalitat de Cataluña (1991).Google Scholar
12.Seguí, V., private conference, Curso de Reparación de Obras de Hormigón, Bilbao, Spain, January (1992).Google Scholar
13.Vázquez, T., Triviño, F., and Ruiz de Gauna, A., Mater. Constr. 157, 43 (1975).CrossRefGoogle Scholar
14.Vázquez, T., Triviño, F., and Ruiz de Gauna, A., Mater. Constr. 158, 5 (1975).CrossRefGoogle Scholar
15.Pérez, M., Vázquez, T., and Triviño, F., Cem. Concr. Res. 13, 759 (1983).CrossRefGoogle Scholar
16.Pérez, M., Vázquez, T., and Triviño, F., Cem. Concr. Res. 14, 1 (1984).CrossRefGoogle Scholar
17.Pérez, M. and Triviño, F., Cem. Concr. Res. 14, 161 (1984).CrossRefGoogle Scholar
18.Pérez, M., Triviño, F., and Andrade, C., Mater. Constr. 182, 46 (1981).Google Scholar
19.Raask, E., in Proc. Int. Symp. on the Carbonation of Concrete. Cem Concr. Association, Slough, UK (1976).Google Scholar
20.Blenkinsop, R. D., Currell, B. R., Midgley, H. G., and Parsonage, J. R., Cem. Concr. Res. 15, 276 (1985).CrossRefGoogle Scholar
21.Duriez, M., in Traité de Matériaux de Construction (Editions du Moniteur des Travaux Publics, Paris, 1957).Google Scholar
22. Anon, New Civil Engineer., 10 February (1974).Google Scholar
23.Elliot, A. G. and Robert, R. H., J. Am. Ceram. Soc. 58, 497 (1975).CrossRefGoogle Scholar
24.Barneyback, R. S. and Diamond, S., Cem. Concr. Res. 11, 279 (1981).CrossRefGoogle Scholar
25.Diamond, S., Cem. Concr. Res. 11, 383 (1981).CrossRefGoogle Scholar
26.Gaztañaga, M. T., Goni, S., and Sagrera, J. L., Solid State Ionics 63–65, 797 (1993).CrossRefGoogle Scholar
27.Goni, S., Gaztañaga, M. T., and Sagrera, J. L., J. Mater. Res. 9, 1533 (1994).CrossRefGoogle Scholar
28.Chinchón, S., Jornades tecniques sobre el ciment aluminós i els seus prefabricats, Collegi d'Aparelladors i Arquitectes Técnics de Barcelona (April 1991).Google Scholar
29.Rooksby, H. P., in Oxides and Hydroxides of Aluminum and Iron (Mineralogical Society, London, 1961), p. 354.Google Scholar
30.Schoen, R. and Roberson, E. C., Am. Miner. 55, 43 (1970).Google Scholar
31.Van Nordstrand, R. A., Hettinger, W. P., and Keith, C. D., Nature (London) 177, 713 (1956).CrossRefGoogle Scholar
32.Papée, D., Tertian, R., and Biais, R., Bull. Soc. Chim. Fr., 1301 (1958).Google Scholar
33.Saalfeld, H. and Jarchoma, O.. Neus Jahrb. Mineral. Abhandl 109, 185 (1986).Google Scholar
34.Linsen, B. J., Physical and Chemical Aspects of Adsorbents and Catalysts (Academic Press, London, 1970).Google Scholar