Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:00:20.640Z Has data issue: false hasContentIssue false

A new loading history for identification of viscoplastic properties by spherical indentation

Published online by Cambridge University Press:  03 March 2011

N. Huber
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung II, 76021 Karlsruhe, Germany
E. Tyulyukovskiy
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung II, 76021 Karlsruhe, Germany
Get access

Abstract

In this paper a new loading history for extracting the stress–strain curve as well as the viscosity and creep behavior from indentation experiments is developed. It is based on a simple model describing the viscoplastic spherical indentation with a power-law hardening rule and a velocity-dependent overstress. Using this model, patterns were generated consisting of load-depth data and corresponding material parameters. The loading history for the simulation of the patterns was considered as a variable combination of loading and creep processes. To compare the identification potential of different loading histories, the inverse problem of determining the viscoplastic material parameters was solved by using neural networks. The emerging loading history uses a multiple-creep process with equidistant load steps and allows an identification of material parameters with much higher accuracy than with single creep. It will be used for further work, where the identification method is generalized using more realistic finite element simulations for a finite deformation elastic–viscoplastic material behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D., Hardness of Metals (Cambridge University Press, Cambridge, U.K., 1951).Google Scholar
2.Atkins, A.G. and Tabor, D.T., J. Mech. Phys. Solids 13 149 (1965).CrossRefGoogle Scholar
3.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
4.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
5.Meyer, E., Zeits. Ver. Dt. Ing. 52 82 (1908).Google Scholar
6.Field, J.S. and Swain, M.V., J. Mater. Res. 8 297 (1993).CrossRefGoogle Scholar
7.Huber, N., Munz, D. and Tsakmakis, Ch., J. Mater. Res. 12 2459 (1997).CrossRefGoogle Scholar
8.Jayaraman, S., Hahn, G.T., Oliver, W.C. and Rubin, C.A., Int. J. Solids Structures 35 365 (1998).CrossRefGoogle Scholar
9.Mayo, M.J. and Nix, W.D., Acta Metall. 36 2183 (1988).CrossRefGoogle Scholar
10.Raman, V. and Berriche, R., J. Mater. Res. 7 627 (1992).CrossRefGoogle Scholar
11.Huber, N. and Tsakmakis, Ch., J. Mech. Phys. Solids 47 1569 (1999).CrossRefGoogle Scholar
12.Huber, N. and Tsakmakis, Ch., J. Mech. Phys. Solids 47 1589 (1999).CrossRefGoogle Scholar
13.Huber, N., On the Determination on Mechanical Properties using the Indentation Test (FZKA-Report 5850, Forschungszentrum Karlsruhe GmbH, 1996), pp. 5155.Google Scholar
14.Diegele, E., Jansohn, W. and Tsakmakis, Ch., Comput. Mech. 25 1 (2000).CrossRefGoogle Scholar
15.Huber, N. and Tsakmakis, Ch. in Micro Materials, edited by Michel, B. and Winkler, T. (Drudehaus Dresden GmbH, Dresden, Germany, 1997), p. 188Google Scholar
16.Shimizu, S., Yanagimoto, T. and Sakai, M., J. Mater. Res. 14 4075 (1999).CrossRefGoogle Scholar
17.Cheng, L., Xia, X., Yu, W., Scriven, L.E. and Gerberich, W.W., J. Polymer Sci. B 38 10 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
18.Ngan, A.H.W. and Tang, B., J. Mater. Res. 17 2604 (2002).CrossRefGoogle Scholar
19.Oyen, M.L. and Cook, R.F., J. Mater. Res. 18 139 (2003).CrossRefGoogle Scholar
20.Bucaille, J.L., Felder, E. and Hochstetter, G., J. Mater. Sci. 37 3999 (2002).CrossRefGoogle Scholar
21.Huber, N. and Tsakmakis, Ch., Comput. Methods Appl. Mech. Eng. 191 353 (2001).CrossRefGoogle Scholar
22.Field, J.S. and Swain, M.V., J. Mater. Res. 10 101 (1995).CrossRefGoogle Scholar
23.Hill, R., Storåkers, B. and Zdunek, A.B., Proc. Roy. Soc. Lond. A 423 301 (1989).Google Scholar
24.Mesarovic, S.D.J. and Fleck, N.A., Proc. R. Soc. Lond. A 455 2707 (1999).CrossRefGoogle Scholar
25.Lemaitre, J. and Chaboche, J-L., Mechanics of Solid Materials. (Cambridge University Press, Cambridge, U.K., 1990).CrossRefGoogle Scholar
26.Haykin, S., Neural Networks: A Comprehensive Foundation (Macmillan, New York, 1994).Google Scholar
27.Yagawa, G. and Okuda, H., Model. Simul. Mater. Sci. Eng. 3 435 (1996).Google Scholar
28.Huber, N., Application of Neural Networks to Nonlinear Problems of Mechanics (FZKA-Report 6504, Forschungszentrum Karlsruhe GmbH, 2000).Google Scholar
29.Huber, N. and Tsakmakis, Ch., J. Mater. Res. 13 1650 (1998).CrossRefGoogle Scholar