Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T02:27:54.322Z Has data issue: false hasContentIssue false

New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands

Published online by Cambridge University Press:  03 March 2011

Zhuoying Chen
Affiliation:
Department of Applied Physics and Applied Mathematics, the Columbia Materials Research Science and Engineering Center (MRSEC), and the Columbia Nanocenter (NSEC), Columbia University, New York, New York 10027
Limin Huang
Affiliation:
Department of Applied Physics and Applied Mathematics, the Columbia Materials Research Science and Engineering Center (MRSEC), and the Columbia Nanocenter (NSEC), Columbia University, New York, New York 10027
Jiaqing He
Affiliation:
Department of Materials Science, Brookhaven National Laboratory, Upton, New York 11973
Yimei Zhu
Affiliation:
Department of Materials Science, Brookhaven National Laboratory, Upton, New York 11973
Stephen O'Brien*
Affiliation:
Department of Applied Physics and Applied Mathematics, the Columbia Materials Research Science and Engineering Center (MRSEC), and the Columbia Nanocenter (NSEC), Columbia University, New York, New York 10027
*
a) Address all correspondence to this author.e-mail: so188@columbia.edu
Get access

Abstract

A new nonhydrolytic route for the preparation of well-crystallized size-tunable barium titanate (BaTiO3) nanocrystals capped with surface ligands is reported. Our approach involves: (i) synthesizing a “pseudo” bimetallic precursor, and (ii) combining the as-synthesized bimetallic precursor with a mixture of oleylamine with different surface coordinating ligands at 320 °C for crystallization and crystal growth. Different alcohols in the precursor synthesis and different carboxylic acids were used to study the effect of size and morphological control over the nanocrystals. Nanocrystals of barium titanate with diameters of 6–10 nm (capped with decanoic acid), 3–5 nm (capped with oleic acid), 10–20 nm (a nanoparticle and nanorod mixture capped with oleyl alcohol), and 2–3 nm (capped with oleyl alcohol) were synthesized, and can be easily dispersed into nonpolar solvents such as hexane or toluene. Techniques including x-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy confirm the crystallinity and morphology of these as-synthesized nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 14.Google Scholar
2.Jona, F., Shirane, G.: Ferroelectric Crystals (Pergamon Press, New York, 1962), pp. 108203.Google Scholar
3.Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
4.Kotecki, D.E., Baniecki, J.D., Shen, H., Laibowitz, R.B., Saenger, K.L., Lian, J.J., Shaw, T.M., Athavale, S.D., Cabral, C., Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.J., Wang, Y.Y., Wise, R.: (Ba,Sr)TiO3 dielectrics for future stacked-capacitor DRAM. IBM J. Res. Devel. 43, 367 (1999).CrossRefGoogle Scholar
5.Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Jo, W.: Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682 (1999).CrossRefGoogle Scholar
6.Scott, J.F.: Ferroelectric Memories, Vol. 3 (Springer-Verlag, Berlin, Germany, 2000).CrossRefGoogle Scholar
7.Kim, D-J., Maria, J-P., Kingon, A.I., Streiffer, S.K.: Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1−xTx)O3 thin films as a function of composition. J. Appl. Phys. 93, 5568 (2003).CrossRefGoogle Scholar
8.Brus, L.E., Trautman, J.K.: Nanocrystals and nano-optics. Philos. Trans. R. Soc. London, Ser. A–Math. Phys. Eng. Sci. 353, 313 (1995).Google Scholar
9.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
10.Heath, J.R.: Nanoscale materials. Acc. Chem. Res. 32, 388 (1999).CrossRefGoogle Scholar
11.Ghosez, P., Rabe, K.M.: Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767 (2000).CrossRefGoogle Scholar
12.Rudiger, A., Schneller, T., Roelofs, A., Tiedke, S., Schmitz, T., Waser, R.: Nanosize ferroelectric oxide—Tracking down the superparaelectric limit. Appl. Phys. A Mater. 80, 1247 (2005).CrossRefGoogle Scholar
13.Spaldin, N.A.: Fundamental size limits in ferroelectricity. Science 304, 1607 (2004).CrossRefGoogle ScholarPubMed
14.Zhu, J., Zheng, L., Luo, W.B., Li, Y.R., Zhang, Y.: Microstructural and electrical properties of BaTiO3 epitaxial films on SrTiO3 substructures with a LaNiO3 conductive layer as a template. J. Phys. D: Appl. Phys. 39, 2438 (2006).CrossRefGoogle Scholar
15.Misirlioglu, I.B., Alpaya, S.P., Heb, F., Wells, B.O.: Stress induced monoclinic phase in epitaxial BaTiO3 on MgO. J. Appl. Phys. 99, 104103 (2006).CrossRefGoogle Scholar
16.He, J.Q., Vasco, E., Dittmann, R., Wang, R.H.: Growth dynamics and strain-relaxation mechanisms in BaTiO3 pulsed laser deposited on SrRuO3/SrTiO3. Phys. Rev. B 73, 125413 (2006).CrossRefGoogle Scholar
17.Wang, S.Y., Cheng, B.L., Wang, C., Dai, S.Y., Jin, K.J., Zhou, Y.L., Lu, H.B., Chen, Z.H., Yang, G.Z.: Raman spectroscopy studies of Ce-doping effects on Ba0.5Sr0.5TiO3 thin films. J. Appl. Phys. 99, 013504 (2006).CrossRefGoogle Scholar
18.Zhu, X.H., Chan, H.L.W., Choy, C-L., Wong, K-H., Hesse, D.: A comparative microstructural study of compositionally up- and down-graded (Ba, Sr)TiO3 thin films epitaxially grown on (La, Sr)CoO3-covered MgO(100) substrates by pulsed laser deposition. Appl. Phys. A 82, 709 (2006).CrossRefGoogle Scholar
19.Trithaveesak, O., Schubert, J., Buchal, C.: Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates. J. Appl. Phys. 98, 114101 (2005).CrossRefGoogle Scholar
20.Cojocaru, C-V., Harnagea, C., Rosei, F., Pignolet, A., van den Boogaart, M.A.F., Brugger, J.: Complex oxide nanostructures by pulsed laser deposition through nanostencils. Appl. Phys. Lett. 86, 183107 (2005).CrossRefGoogle Scholar
21.Boikov, Y.A., Claeson, T.: Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures. J. Appl. Phys. 89, 5053 (2001).CrossRefGoogle Scholar
22.Petraru, A., Schubert, J., Schmid, M., Buchal, C.: Ferroelectric BaTiO3 thin-film optical waveguide modulators. Appl. Phys. Lett. 81, 1375 (2002).CrossRefGoogle Scholar
23.Cho, Y.W., Choi, S.K., Rao, G. Venkata: The influence of an extrinsic interfacial layer on the polarization of sputtered BaTiO3 film. Appl. Phys. Lett. 86, 202905 (2005).CrossRefGoogle Scholar
24.Tsai, H-N., Liang, Y-C., Lee, H-Y.: Characteristics of sputter-deposited BaTiO3/SrTiO3 artificial superlattice films on an LaNiO3-coated SrTiO3 substrate. J. Cryst. Growth 284, 65 (2005).CrossRefGoogle Scholar
25.Reddy, Y.K. Vayunandana, Mergel, D., Reuter, S., Buck, V., Sulkowski, M.: Structural and optical properties of BaTiO3 thin films prepared by radio-frequency magnetron sputtering at various substrate temperatures. J. Phys. D: Appl. Phys. 39, 1161 (2006).CrossRefGoogle Scholar
26.Ma, J.H., Huang, Z.M., Meng, X.J., Liu, S.J., Zhang, X.D., Sun, J.L., Xue, J.Q., Chu, J.H., Li, J.: Optical properties of SrTiO3 thin films deposited by radio-frequency magnetron sputtering at various substrate temperatures. J. Appl. Phys. 99, 033515 (2006).CrossRefGoogle Scholar
27.Kamel, F. El, Gonon, P., Jomni, F.: Electrical properties of low temperature deposited amorphous barium titanate thin films as dielectrics for integrated capacitors. Thin Solid Films 504, 201 (2006).CrossRefGoogle Scholar
28.Frey, M.H., Payne, D.A.: Synthesis and processing of barium-titanate ceramics from alkoxide solutions and monolithic gels. Chem. Mater. 7, 123 (1995).CrossRefGoogle Scholar
29.Viswanath, R.N., Ramasamy, S.: Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO3. Nanostruct. Mater. 8, 155 (1997).CrossRefGoogle Scholar
30.Khalil, K.M.S.: Low temperature evolution of crystalline BaTiO3 from alkali-metal free precursor using sol-gel process. Mater. Res. Innovations 2, 256 (1999).CrossRefGoogle Scholar
31.Paik, D.S., Rao, A.V. Prasada, Komarneni, S.: Ba titanate and barium/strontium titanate thin films from hydroxide precursors: Preparation and ferroelectric behavior. J. Sol.-Gel. Sci. Technol. 10, 213 (1997).CrossRefGoogle Scholar
32.Matsuda, H., Kobayashi, N., Kobayashi, T., Miyazawa, K., Kuwabara, M.: Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method. J. Non-Cryst. Solids 271, 162 (2000).CrossRefGoogle Scholar
33.Hung, K.M., Yang, W.D., Huang, C.C.: Preparation of nanometer-sized barium titanate powders by a sol-precipitation process with surfactants. J. Eur. Ceram. Soc. 23, 1901 (2003).CrossRefGoogle Scholar
34.Fan, G., Huangpu, L., He, X.: Synthesis of single-crystal BaTiO3 nanoparticles via a one-step sol-precipitation route. J. Cryst. Growth 279, 489 (2005).Google Scholar
35.Hernandez, B.A., Chang, K.S., Fisher, E.R., Dorhout, P.K.: Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480 (2002).CrossRefGoogle Scholar
36.Her, Y-S., Matijevic, E., Chon, M.C.: Preparation of well-defined colloidal barium-titanate crystals by the controlled double-jet precipitation. J. Mater. Res. 10, 3106 (1995).CrossRefGoogle Scholar
37.Hu, M.Z-C., Miller, G.A., Payzant, E.A., Rawn, C.J.: Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles. J. Mater. Sci. 35, 2927 (2000).CrossRefGoogle Scholar
38.Wada, S., Tsurumi, T., Chikamori, H., Noma, T., Suzuki, T.: Preparation of nm-sized BaTiO3 crystallites by a LTDS method using a highly concentrated aqueous solution. J. Cryst. Growth 229, 433 (2001).CrossRefGoogle Scholar
39.Xu, H.R., Gao, L.: Tetragonal nanocrystalline barium titanate powder: Preparation, characterization, and dielectric properties. J. Am. Ceram. Soc. 86, 203 (2003).CrossRefGoogle Scholar
40.Duran, P., Capel, F., Gutierrez, D., Tartaj, J., Banares, M.A., Moure, C.: Metal citrate polymerized complex thermal decomposition leading to the synthesis of BaTiO3: Effects of the precursor structure on the BaTiO3 formation mechanism. J. Mater. Chem. 11, 1828 (2001).CrossRefGoogle Scholar
41.Rumpf, H., Modrow, H., Hormes, J., Glasel, H.J., Hartmann, E., Erdem, E., Bottcher, R., Hallmeier, K.H.: Preparation of nanocrystalline BaTiO3 characterized by in situ x-ray absorption spectroscopy. J. Phys. Chem. B 105, 3415 (2001).CrossRefGoogle Scholar
42.Arya, P.R., Jha, P., Ganguli, D.: Synthesis, characterization and dielectric properties of nanometersized barium strontium titanates prepared by the polymeric citrate precursor method. J. Mater. Chem. 13, 415 (2003).CrossRefGoogle Scholar
43.O’Brien, S., Brus, L., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).CrossRefGoogle Scholar
44.Urban, J.J., Yun, W.S., Gu, Q., Park, H.: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).CrossRefGoogle ScholarPubMed
45.Clark, I.J., Takeuchi, T., Ohtori, N., Sinclair, D.C.: Hydrothermal synthesis and characterisation of BaTiO3 fine powders: Precursors, polymorphism and properties. J. Mater. Chem. 9, 83 (1999).CrossRefGoogle Scholar
46.Dutta, P.K., Gregg, J.R.: Hydrothermal synthesis of tetragonal barium-titanate. Chem. Mater. 4, 843 (1992).CrossRefGoogle Scholar
47.Walton, R.I., Millange, F., Smith, R.I., Hansen, T.C., O’Hare, D.: Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction. J. Am. Chem. Soc. 123, 12547 (2001).CrossRefGoogle ScholarPubMed
48.Ciftci, E., Rahaman, M.N., Shumsky, M.: Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles. J. Mater. Sci. 36, 4875 (2001).CrossRefGoogle Scholar
49.Zhang, M-S., Yu, J., Chu, J., Chen, D., Chen, W.: Microstructures and photoluminescence of barium titanate nanocrystals synthesized by the hydrothermal process. J. Mater. Process. Technol. 137, 78 (2003).CrossRefGoogle Scholar
50.Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).CrossRefGoogle ScholarPubMed
51.Yan, T., Shen, Z-G., Chen, J-F., Liu, X-L., Tao, X., Yun, J.: Synthesis of well-isolated barium titanium trioxide nanocubes. Chem. Lett. (Jpn.). 34, 1196 (2005).CrossRefGoogle Scholar
52.Niederberger, M., Pinna, N., Polleux, J., Antonietti, M.: A general soft-chemistry route to perovskites and related materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem., Int. Ed. Engl. 43, 2270 (2004).CrossRefGoogle Scholar
53.Niederberger, M., Garnweitner, G., Pinna, N., Antonietti, M.: Nonaqueous and halide-free route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C–C bond formation. J. Am. Chem. Soc. 126, 9120 (2004).CrossRefGoogle Scholar
54.Nuraje, N., Su, K., Haboosheh, M., Samson, J., Manning, E.P., Yang, N-L., Matsui, H.: Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv. Mater. 18, 807 (2006).CrossRefGoogle ScholarPubMed
55.Wu, X., Zou, L., Yang, S., Wang, D.: Structural characterizations of organo-capped barium titanate nanoparticles prepared by the wet chemical route. J. Colloid Interface Sci. 239, 369 (2001).CrossRefGoogle ScholarPubMed
56.Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B.: Structural diversity in binary nanoparticle superlattices. Nature 439, 55 (2006).CrossRefGoogle ScholarPubMed
57.Redl, F.X., Cho, K.S., Murray, C.B., O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968 (2003).CrossRefGoogle ScholarPubMed
58.Mehrotra, R.C., Singh, A., Sogani, S.: Homometallic and heterometallic alkoxides of group 1,2, and 12 metals. Chem. Soc. Rev. 23, 215 (1994).CrossRefGoogle Scholar