Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:30:08.085Z Has data issue: false hasContentIssue false

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials

Published online by Cambridge University Press:  31 January 2011

M. F. Casula
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
A. Corrias
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
G. Paschina
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
Get access

Abstract

The sol-gel method was used to prepare nickel oxide–silica and nickel–silica nanocomposite materials and the corresponding silica matrices. Different drying conditions were used to obtain aerogel and xerogel materials. The samples were characterized by thermal analysis, x-ray diffraction, N2–physisorption, transmission electron microscopy techniques, and infrared spectroscopy. Aerogel samples had a much higher surface area than the xerogel samples; moreover, different supercritical drying conditions gave rise to a different porous structure, which influenced the size and distribution of the nanoparticles in the matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
2. Gleiter, H., J. Appl. Crystallogr. 24, 79 (1991).CrossRefGoogle Scholar
3. Siegel, R.W., J. Phys. Chem. Solids 55, 1097 (1994).CrossRefGoogle Scholar
4. Komarneni, S., J. Mater. Chem. 2, 1219 (1992).Google Scholar
5. Newnham, R.E., McKinstry, S.E., and Ikaua, H., in Multifunctional Ferroic Nanocomposites, edited by Buckley, A., Gallagher-Daggitt, G., Karasz, F.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 175, Pittsburgh, PA, 1990), pp. 161172.Google Scholar
6. Brinker, C.J. and Scherer, G.W.. Sol-gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
7. Sol-Gel technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by C.L. Klein (Noyes Publication, Park Ridge, NJ, 1988).Google Scholar
8. Corrias, A., Mountjoy, G., Piccaluga, G., and Solinas, S., J. Phys. Chem. B 103, 10081 (1999).CrossRefGoogle Scholar
9. Corrias, A., Enans, G., Mountjoy, G., and Paschina, G., Phys. Chem. Chem. Phys. 5, 1045 (2000).CrossRefGoogle Scholar
10. Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., and Piccaluga, G., Nanostruct. Mater. 11, 573 (1999).CrossRefGoogle Scholar
11. Falconieri, M., Salvetti, G., Cattaruzza, E., Gonella, F., Mattei, G., Mazzoldi, P., Piovesan, M., and Battaglin, G., Appl. Phys. Lett. 73, 288 (1998).Google Scholar
12. Ueno, A., Suzuki, H., and Kotera, Y., J. Chem. Soc., Faraday Trans. I 79, 127 (1983).Google Scholar
13. Basumallick, A., Biswas, K., Das, G.C., and Mukherjee, S., J. Mater. Res. 10, 2938 (1995).CrossRefGoogle Scholar
14. Keane, M., Langmuir 13, 41 (1997).Google Scholar
15. Roy, S., Chakravorty, D., and Agravol, D.L., J. Appl. Phys. 74, 4746 (1993).CrossRefGoogle Scholar
16. Pajonk, G.M. and Teichner, S.J., in Aerogels, edited by Fricke, J. (Springer Proceedings in Physics, Berlin, Germany, 1986).Google Scholar
17. Ennas, G., Marongiu, G., Paschina, G., Piccaluga, G., and Solinas, S., Euromat 1999 Proceedings (2000, in press).Google Scholar
18. Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).Google Scholar
19. Lippens, B.C. and De Boer, J.H., J. Catal. 4, 319 (1965).CrossRefGoogle Scholar
20. Lecloux, A. and Pirard, J.P., J. Colloid Interface Sci. 70, 265 (1979).Google Scholar
21. Dubinin, M.M., Q. Rev. Chem. Soc. 9, 101 (1955).Google Scholar
22. Horwarth, G. and Kawazoe, K., J. Chem. Eng. Jpn. 16, 470 (1983).Google Scholar
23. Brunauer, S., Deming, L.S., Deming, W.S., and Teller, E., J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
24. Sing, K.S.W, Everett, D.H., Haul, R.A.W, Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
25. Barret, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc. 73, 373 (1951).Google Scholar
26.PDF-2 File, JCPDS International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA, 1998.Google Scholar
27. Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures (Wiley, New York, 1974).Google Scholar
28. Nakamoto, K., Infrared Spectroscopy of Inorganic and Co-ordination Compounds (Wiley, New York, 1970).Google Scholar
29. Weigel, D., Imelik, B., and Lafitte, P., Bull. Soc. Chim. Fr. 345 (1962).Google Scholar
30. Clause, O., Kermarec, M., Bonneviot, L., Villain, F., and Che, M., J. Am. Chem. Soc. 114, 4709 (1992).Google Scholar
31. Prassas, M., Phalippou, J., and Zarzycki, J., J. Mater. Sci. 19, 1656 (1984).CrossRefGoogle Scholar
32. Boonstra, A.H. and Baken, J.M.E, J. Non-Cryst. Solids 109, 1 (1989).CrossRefGoogle Scholar
33. Ennas, G. (private communication).Google Scholar