Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:33:21.989Z Has data issue: false hasContentIssue false

Nonuniform distribution of second phase particles in melt-textured Y–Ba–Cu–O oxide with metal oxide (CeO2, SnO2, and ZrO2) addition

Published online by Cambridge University Press:  03 March 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon, 305-600, Korea
Ho-Yong Lee
Affiliation:
Department of Material Science and Engineering, Sungwha University, Choongnam, 337-840, Korea
Get access

Abstract

Segregation of second-phase particles within Y1Ba2Cu3O7−y domain was investigated in melt-textured Y-Ba-Cu-O with metal oxide (CeO2, SnO2, and ZrO2) addition. It is found that coarse particles (Y2Ba1Cu1O5) are trapped with a special pattern in the interior of Y1Ba2Cu3O7−y domain, while fine BaCeO3 and BaSnO3 particles are present within the remnant liquid-phase region. During the growth of Y1Ba2Cu3O7−y domain, fine particles appear to be pushed out of the advancing Y1Ba2Cu3O7−y /liquid interface toward the liquid phase. The particle segregation that occurred during peritectic growth of the Y1Ba2Cu3O7−y domain was explained in terms of the Uhlmann-Chalmers-Jackson theory based on the particle interaction at solid/liquid interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R.B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
2Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn. J. Appl. Phys. 28, L1189 (1989).Google Scholar
4Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
5Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6, 1404 (1991).Google Scholar
6Wang, Z. L., Goyal, A., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).Google Scholar
7C-J. Kim, Lai, S. H., and McGinn, P.J., Mater. Lett. 19, 185 (1994).Google Scholar
8Varanaci, C. and McGinn, P.J., Physica C 207, 79 (1993).Google Scholar
9Miletich, R., Murakami, M., Preisinger, A., and Weber, H. W., Physica C 209, 415 (1993).CrossRefGoogle Scholar
10Kim, C-J., Moon, H-C., Kim, K-B., Kwon, S-C., Suhr, D-S., Suh, I-S., and Won, D. Y., J. Mater. Sci. Lett. 11, 831 (1992).Google Scholar
11Kim, C-J., Kim, K-B., Hong, G-W., Won, D-Y., Kim, B-H., Kim, C-T., Moon, H-C., and Suhr, D-S., J. Mater. Res. 7, 2349 (1992).CrossRefGoogle Scholar
12McGinn, P., Chen, W., Zhu, N., Tan, L., Varanaci, C., and Sengupta, S., Appl. Phys. Lett. 59, 120 (1991).CrossRefGoogle Scholar
13Kim, C-J., Kim, K-B., Won, D-Y., Moon, H-C., Suhr, D-S., Lai, S. H., and McGinn, P.J., J. Mater. Res. 9, 1952 (1994).Google Scholar
14Rodriguez, M. A., Chen, B-J., and Snyder, R., Physica C 195, 185 (1992).CrossRefGoogle Scholar
15Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
16Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Physica C 228, 351 (1994).Google Scholar
17Wagner, R. S., Ellis, W. C., Jackson, K. A., and Arnold, S. M., J. Appl. Phys. 35, 2993 (1964).Google Scholar