Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T12:20:56.720Z Has data issue: false hasContentIssue false

A novel biomimetic material duplicating the structure and mechanics of natural nacre

Published online by Cambridge University Press:  19 May 2011

Francois Barthelat*
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada
Deju Zhu
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada
*
a)Address all correspondence to this author. e-mail: francois.barthelat@mcgill.ca
Get access

Abstract

Nacre from mollusk shell is a high-performance natural composite composed of microscopic mineral tablets bonded by a tough biopolymer. Under tensile stress, the tablets slide on one another in a highly controlled fashion, which makes nacre 3000 times tougher than the mineral it is made of. Significant efforts have led to nacre-like materials, but none can yet match this amount of toughness amplification. This article presents the first synthetic material that successfully duplicates the mechanism of tablet sliding observed in nacre. Made of millimeter-size wavy poly-methyl-methacrylate tablets held by fasteners, this “model material” undergoes massive tablet sliding under tensile loading, accompanied by strain hardening. Analytical and finite element models successfully captured the salient deformation mechanisms in this material, enabling further design refinements and optimization. In addition, two new mechanisms were identified: the effect of free surfaces and “unzipping.” Both mechanisms may be relevant to natural materials such as nacre or bone.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barthelat, F.: Biomimetics for next generation materials. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 365, 2907 (2007).CrossRefGoogle ScholarPubMed
2.Wegst, U.G.K. and Ashby, M.F.: The mechanical efficiency of natural materials. Philos. Mag. 84, 2167 (2004).CrossRefGoogle Scholar
3.Ballarini, R., Kayacan, R., Ulm, F.J., Belytschko, T., and Heuer, A.H.: Biological structures mitigate catastrophic fracture through various strategies. Int. J. Fract. 135, 187 (2005).Google Scholar
4.Meyers, M.A., Chen, P.Y., Lin, A.Y.M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1 (2008).CrossRefGoogle Scholar
5.Barthelat, F.: Nacre from mollusk shells: A model for high-performance structural materials. Bioinspiration Biomimetics 5, 1 (2010).Google Scholar
6.Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. 196, 443 (1977).Google Scholar
7.Schaeffer, T.E., IonescuZanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almqvist, N., Zaremba, C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 (1997).CrossRefGoogle Scholar
8.Barthelat, F. and Rabiei, R.: Toughness amplification in natural composites. J. Mech. Phys. Solids 59, 829 (2011).CrossRefGoogle Scholar
9.Evans, A.G., Suo, Z., Wang, R.Z., Aksay, I.A., He, M.Y., and Hutchinson, J.W.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).CrossRefGoogle Scholar
10.Barthelat, F. and Espinosa, H.D.: An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47, 311 (2007).Google Scholar
11.Jackson, A.P., Vincent, J.F.V., and Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. 234, 415 (1988).Google Scholar
12.Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
13.Smith, B.L., Schaeffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).CrossRefGoogle Scholar
14.Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.M., and Espinosa, H.D.: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306 (2007).Google Scholar
15.Song, F. and Bai, Y.L.: Effects of nanostructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741 (2003).CrossRefGoogle Scholar
16.Tang, Z.Y., Kotov, N.A., Magonov, S., and Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).Google Scholar
17.Podsiadlo, P., Paternel, S., Rouillard, J.M., Zhang, Z.F., Lee, J., Lee, J.W., Gulari, L., and Kotov, N.A.: Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 21, 11915 (2005).Google Scholar
18.Bonderer, L.J., Studart, A.R., and Gauckler, L.J.: Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069 (2008).Google Scholar
19.Almqvist, N., Thomson, N.H., Smith, B.L., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37 (1999).Google Scholar
20.Chen, R.F., Wang, C.A., Huang, Y., and Le, H.R.: An efficient biomimetic process for fabrication of artificial nacre with ordered-nano structure. Mater. Sci. Eng. C 28, 218 (2008).Google Scholar
21.Pezzotti, G., Asmus, S.M.F., Ferroni, L.P., and Miki, S.: In situ polymerization into porous ceramics: A novel route to tough biomimetic materials. J. Mater. Sci. Mater. Med. 13, 783 (2002).CrossRefGoogle ScholarPubMed
22.Li, C.M. and Kaplan, D.L.: Biomimetic composites via molecular scale self-assembly and biomineralization. Curr. Opin. Solid State Mater. Sci. 7, 265 (2003).CrossRefGoogle Scholar
23.Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Tough, bio-inspired hybrid materials. Science 322, 1516 (2008).CrossRefGoogle ScholarPubMed
24.Espinosa, H.D., Rim, J.E., Barthelat, F., and Buehler, M.J.: Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059 (2009).Google Scholar
25.Kotha, S.P., Li, Y., and Guzelsu, N.: Micromechanical model of nacre tested in tension. J. Mater. Sci. 36, 2001 (2001).CrossRefGoogle Scholar
26.Tushtev, K., Murck, M., and Grathwohl, G.: On the nature of the stiffness of nacre. Mater. Sci. Eng. C 28, 1164 (2008).CrossRefGoogle Scholar
27.Biron, M.: Thermoplastics and Thermoplastic Composites: Technical Information for Plastics Users (Elsevier, Oxford, 2007).Google Scholar
28.Gorenc, B., Gorenc, B., Tinyou, R., and Syam, A.: Steel Designers’ Handbook (University of New South Wales, Sydney, Australia, 2005).Google Scholar
29.Vincent, J.F.V., and Mann, D.L.: Systematic technology transfer from biology to engineering. Philos. Trans. R. Soc. London, Ser. A 360, 159 (2002).CrossRefGoogle ScholarPubMed
30.Milwich, M., Speck, T., Speck, O., Stegmaier, T., and Planck, H.: Biomimetics and technical textiles: Solving engineering problems with the help of nature’s wisdom. Am. J. Bot. 93, 1455 (2006).Google Scholar