Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T04:36:58.215Z Has data issue: false hasContentIssue false

Novel Synthesis of Nitride Powders by Microwave-assisted Combustion

Published online by Cambridge University Press:  31 January 2011

B. Vaidhyanathan
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
D. K. Agrawal*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
R. Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: dxa4@psu.edu
Get access

Abstract

A novel and simple microwave-assisted combustion procedure for the synthesis of a number of technologically important metal nitrides was demonstrated. The method involves the combustion reaction of a porous metal powder compact with N2 gas in the microwave field and provides phase-pure metal nitride products (consisting of fine particles, fibers, and whiskers) within minutes. The ignition and combustion temperatures of the reaction were found to vary as a function of compaction pressure. The microwave-prepared nitrides were characterized using x-ray diffraction, scanning electron microscopy energy dispersive spectroscopy, thermogravimetric analysis, and infrared spectroscopy. The present microwave-assisted hybrid-heating procedure allows the preparation of nitrides with good crystallinity, structural uniformity, and phase purity, and appears to have general applicability for the preparation of metal nitrides (using the respective metals or even their oxides).

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Niewa, R. and DiSalvo, F.J., Chem. Mater. 10, 2733 (1998).CrossRefGoogle Scholar
2.Boumerzoug, M., Pang, Z., Boudreau, M., Mascher, P., and Simmons, J.G., Appl. Phys. Lett. 66, 302 (1995).CrossRefGoogle Scholar
3.Maatsumura, Y., Chujo, T., Uchida, H., and Uchida, H.H., Surf. Coat. Technol. 60, 489 (1993).CrossRefGoogle Scholar
4.Sheppard, L.M., Ceram. Bull. 69, 1801 (1990).Google Scholar
5.Pathak, L.C., Ray, A.K., Das, S., Sivaramakrishnan, C.S., and Ramachandrarao, P., J. Am. Ceram. Soc. 82, 257 (1999).CrossRefGoogle Scholar
6.Mroz, T.J. Jr, Ceram. Bull. 72, 78 (1993).Google Scholar
7.Oyama, S.T., Catal. Today 15, 1 (1992).Google Scholar
8.Matthew, D.V., Ceram. Bull. 78, 69 (1999).Google Scholar
9.Raghavan, N.S., Poste, S.D., and Pattemore, D., Mater. Sci. Eng. B 19, 240 (1993).CrossRefGoogle Scholar
10.Weimer, A.W., Cochran, G.A., Eisman, G.A., Henley, J.P., Hook, B.D., Mills, L.K., Guiton, T.A., Knudsen, A.K., Nicholas, N.R., Volmering, J.E., and Moore, W.G., J. Am. Ceram. Soc. 77, 3 (1994).Google Scholar
11.Galiev, A.L., Krapivin, L.L., Mirkin, L.I., and Uglov, A.A., Sov. Phys. Dokl. 25, 208, (1980).Google Scholar
12.Kapoor, R. and Oyama, S.T., J. Solid State Chem. 99, 303 (1992).CrossRefGoogle Scholar
13.Hahn, H.Z., Z. Anorg. Chem. 258, 58 (1949).CrossRefGoogle Scholar
14.Kim, K.H., Ho, C.H., Doerr, H., Deshpandey, C., and Bunshah, R.F., J. Mater. Sci. 27, 2580 (1992).CrossRefGoogle Scholar
15.Baba, K., Shokata, N., and Yonezawa, M., Appl. Phys. Lett. 54, 2309 (1989).CrossRefGoogle Scholar
16.Chung, S.L., Yu, W.L., and Lin, C.N., J. Mater. Res. 14, 1928 (1999).CrossRefGoogle Scholar
17.Landry, C.C. and Barron, A.R., Science 260, 1653 (1993).CrossRefGoogle Scholar
18.Baghurst, D.R., Chippindale, A.M., and Mingos, D.M.P, Nature 332, 311 (1988).CrossRefGoogle Scholar
19.Metaxas, A.C. and Binner, J.G.P, Advanced Ceramics 1, 285 (1990).Google Scholar
20.Clark, D.E., Ahmed, I., and Dalton, R.C., Mater. Sci. Eng. A 144, 91 (1991).Google Scholar
21.Rao, K.J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P.A., Chem. Mater. 11, 882 (1999).CrossRefGoogle Scholar
22.Vaidhyanathan, B., Balaji, K., and Rao, K.J., Chem. Mater. 10, 3400 (1998).CrossRefGoogle Scholar
23.Houmes, J.D. and zur Loye, H-C., Chem. Mater. 8, 2551 (1996).Google Scholar
24.Vaidhyanathan, B. and Rao, K.J., Chem. Mater. 9, 1196 (1997).Google Scholar
25.Whittaker, A.G. and Mingos, D.M.P, J. Chem. Soc., Dalton Trans. 16, 2541 (1993).Google Scholar
26.Ramesh, P.D. and Rao, K.J., Adv. Mater. (Weinheim, Germany) 7, 177 (1995).Google Scholar
27.Cheng, J.P., Agrawal, D.K., Komarneni, S., Mathis, M.D., and Roy, R., Mat. Res. Innovat. 1, 44 (1997).Google Scholar
28.Vaidhyanathan, B., Agrawal, D.K., Shrout, T., and Fang, Y., Mater. Lett. 42, 207 (2000).CrossRefGoogle Scholar
29.Vaidhyanathan, B. and Rao, K.J., J. Mater. Res. 12, 1 (1997).Google Scholar
30.Mathis, M.D., Agrawal, D.K., Roy, R., Plovnick, R.H., and Hutcheon, R.M., Ceram. Trans. 59, 557 (1995).Google Scholar
31.Gadevanishvilli, S., Vaidhyanathan, B., Agrawal, D.K., and Roy, R., U.S. Patent (filed Jan. 22, 1999) No. 60/116 838 (1998).Google Scholar
32.Whittaker, A.G. and Mingos, D.M.P, J. Chem. Soc. Dalton Trans. 12, 2073 (1995).CrossRefGoogle Scholar
33.Vaidhyanathan, B., Ganguli, M., and Rao, K.J., Mater. Res. Bull. 30, 1773 (1995).Google Scholar
34.Roy, R., Agrawal, D.K., Cheng, J., Gadevanishvilli, S., Nature 399, 668 (1999).Google Scholar
35.Lee, W.C., Tu, C.L., Weng, C.Y., and Chung, S.L., J. Mater. Res. 10, 774 (1995).CrossRefGoogle Scholar
36.Mathis, M.D., Agrawal, D.K., Roy, R., Plovnick, R.H., and Hutcheon, R., Ceram. Trans. 59, 533 (1995).Google Scholar
37.Janney, M.A. and Kimrey, H.D., in Ceramic Powder Science II, edited by Messing, G.L., Fuller, E.R. Jr, and Hausner, H. (American Ceramics Society, Westerville, OH, 1988), p. 919.Google Scholar
38.Walkiewicz, J.W., Kazonich, G., and McGill, S.L., Miner. Metall. Processing 5, 39 (1988).Google Scholar
39.Lee, K.J., Kim, S.Y., and Kim, Y.S., in Proceedings of the 2nd International Symposium on Advanced Synthesis and Processing of Composites and Advanced Ceramics, edited by Logan, K.V., Munir, Z.A., and Spriggs, R.M. (American Ceramic Society, Westerville, OH, 1996), p. 267.Google Scholar
40.Herle, P.S., Hegde, M.S., Vasanthacharya, N.Y., and Philip, S., J. Solid State Chem. 134, 120 (1997).CrossRefGoogle Scholar