Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T05:08:43.431Z Has data issue: false hasContentIssue false

Nucleation behavior of Al–Mn icosahedral phase

Published online by Cambridge University Press:  31 January 2011

L.A. Bendersky
Affiliation:
Metallurgy Division, National Bureau of Standards, Gaithersburg, Maryland 20899
S.D. Ridder
Affiliation:
Metallurgy Division, National Bureau of Standards, Gaithersburg, Maryland 20899
Get access

Abstract

Electrohydrodynamic (EHD) atomization has been used to rapidly solidify micron and submicron size droplets of Al-14 at. % Mn to study nucleation behavior of icosahedral phase. Icosahedral grain size has been found to decrease continuously with decreasing droplet size. Based on this result, formation of the icosahedral phase is explained by homogeneous nucleation. Extremely low resistance to nucleation of icosahedral phase can be understood if possible topological similarities between liquid and icosahedral quasicrystal are considered. Formation of glass as configurationally frozen liquid in Al-Mn and similar alloy systems is questionable, implying that the reported Al-Mn glass probably has a microquasicrystalline structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2Bancel, P. A. and Heiney, P. A., University of Pennsylvania preprint.Google Scholar
3Ramachandrarao, P. and Sastry, G. V. S., Pramana 25, L225 (1985).CrossRefGoogle Scholar
4Sastry, G. V. S., Ramachandrarao, P., and Anantharaman, T. R., preprint.Google Scholar
5Bendersky, L. A. and Biancaniello, F. S., unpublished research, National Bureau of Standards, Gaithersburg, MD 1985.Google Scholar
6Poon, S. J., Drehman, A. J., and Lawless, K. R., Phys. Rev. Lett. 55, 2324 (1985).CrossRefGoogle Scholar
7Zhang, Z., Ye, H. W., and Kuo, K. H., Philos. Mag. A 52, L49 (1985).CrossRefGoogle Scholar
8Levine, D. and Steinhardt, P. J., Phys. Rev. Lett. 53, 2477 (1984).CrossRefGoogle Scholar
9Bak, P., Phys. Rev. Lett. 54, 1517 (1985).Google Scholar
10Elser, V., Phys. Rev. Lett. 54, 1730 (1985).CrossRefGoogle Scholar
11Duneau, M. and Katz, A., Phys. Rev. Lett. 54, 2688 (1985).CrossRefGoogle Scholar
12Kalugin, P. A., Kitaev, A. Yu, and Levitov, L. C., JETP Lett. 41, 145 (1985).Google Scholar
13Briant, C. L., Discuss. Faraday Soc. 61, 25 (1976).Google Scholar
14Spaepen, F. and Turnbull, D., Rapidly Quenched Metals, Second International Conference, edited by Grant, N. J. and Giessen, B. C. (Massachusetts Institute of Technology, Cambridge, MA, 1986), p. 513.Google Scholar
15Dixmier, J. and Sadoc, J. F., in Metallic Glasses (American Society for Metals, Metals Park, OH, 1978), p. 97.Google Scholar
16Frank, F. C., Proc. R. Soc. London Ser. A 215, 43 (1952).Google Scholar
17Frank, F. C., and Kasper, J. S., Acta Crystallogr. 11, 184 (1958); 12, 483 (1959).CrossRefGoogle Scholar
18Nelson, D. R., Phys. Rev. B 28, 5513 (1983); J. Non-Cryst. Sol. 61, 475 (1984).CrossRefGoogle Scholar
19Sachdev, S. and Nelson, D. R., Phys. Rev. B 32, 4592 (1985).Google Scholar
20Elser, V. and Henley, C. L., Phys. Rev. Lett. 55, 2883 (1985).CrossRefGoogle Scholar
21Henley, C. L. and Elser, V., Philos. Mag. B 53, 159 (1986).Google Scholar
22Lilienfeld, D. A., Nastasi, M., Johnson, H. M., Ast, D. G., and Mayer, J. W., Phys. Rev. Lett. 55, 1587 (1985).CrossRefGoogle Scholar
23Knapp, L. A. and Follstaedt, D. M., Phys. Rev. Lett. 55, 1591 (1985).CrossRefGoogle Scholar
24Urban, K., Moser, N., and Kronmuller, H., Phys. Status Solidi A 91, 411 (1985).CrossRefGoogle Scholar
25Perel, J., Maghoney, J. F., Duwez, P., and Kalensher, B. E., in RSP: Principles and Technology II, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor, Baton Rouge, LA, 1980).Google Scholar
26Bancel, P. A., Heiney, P. A., Stephens, P. W., Goldman, A. I., and Horn, P. M., Phys. Rev. Lett. 54, 2422 (1985).CrossRefGoogle Scholar
27Cahn, J. W., Shechtman, D., and Gratias, D., J. Mater. Sci. 1, 13 (1986).Google Scholar
28Herd, S. R. and Chaudhari, P., Phys. Status Solidi A 26, 627 (1974).CrossRefGoogle Scholar
29Gracryk, J. F. and Chaudhari, P., Phys. Status Solidi A 75, 593 (1976).Google Scholar
30Howie, A., Krivanek, O. L., and Rudee, M. L., Philos. Mag. 27, 235 (1973).CrossRefGoogle Scholar
31Rudee, M. L., Phys. Status Solidi B 46, Kl (1971).CrossRefGoogle Scholar
32Robertson, J. L., Misenheimer, M. E., Moss, S. C., and Bendersky, L., submitted to Acta Metall.Google Scholar
33Bendersky, L., Schaefer, R. J., Biancaniello, F. S., Boettinger, W. J., Kaufman, M. J., and Shechtman, D., Scr. Metall. 19, 909 (1985).CrossRefGoogle Scholar
34Schaefer, R. J., Bendersky, L., Shechtman, D., Boettinger, W. J., and Biancaniello, F. S., Metall. Trans. A. (to be published).Google Scholar
35Schaefer, R. J. and Bendersky, L., Scr. Metall. 20, 745 (1986).Google Scholar
36Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
37Turnbull, D., in International Conference on the Theory of the Structures of Non-Crystalline Solids (North-Holland, Amsterdam, 1985).Google Scholar