Article contents
Numerical investigation of indentation fatigue on polycrystalline copper
Published online by Cambridge University Press: 31 January 2011
Abstract
The dynamic indentation response of polycrystalline copper under cyclic fatigue loading is studied with a flat cylindrical indenter. First, a simple analytical model shows that in a purely elastic solid, the indentation depth responds with the same wavelength and frequency as the applied sinusoidal fatigue load. Next, a numerical simulation of an indentation fatigue test on an elastic-plastic solid (polycrystalline copper) is performed. Finite element analyses reveal that the mean indentation depth is controlled by both the mean of the indentation fatigue load and the load amplitude, while the amplitude of the indentation depth is independent of the mean load. Further investigations indicate that with an increased number of cycles, the increment of indentation depth reaches a constant rate. The steady state indentation depth rate is dependent not only on the amplitude of indentation fatigue load but also on the fatigue mean load, which is similar to strain accumulation during a conventional fatigue test. A parallel indentation experiment on annealed polycrystalline copper also confirms the effect of the fatigue mean load, indicating consistency with numerical results.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
REFERENCES
- 11
- Cited by