Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:55:08.642Z Has data issue: false hasContentIssue false

Observation and characterization of a twinned monoclinic phase as a product of the solid state decomposition of Nd2Fe14B

Published online by Cambridge University Press:  31 January 2011

L. Rabenberg*
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, Wiedner Hauptstraβe 10-8/137, A-1040 Wien, Austria
Josef Fidler
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, Wiedner Hauptstraβe 10-8/137, A-1040 Wien, Austria
Johannes Bernardi
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, Wiedner Hauptstraβe 10-8/137, A-1040 Wien, Austria
*
a)Permanent address: Center for Materials Science and Engineering, The University of Texas at Austin, Austin, Texas 78712.
Get access

Abstract

A microtwinned monoclinic phase is observed to occur within the grains of the hard magnetic phase in Nd2Fe14B-based permanent magnet alloys. This phase seems to be the product of a displacive solid state phase transformation of tetragonal Nd2Fe14B, distinguished from Nd2Fe14B by the presence of an ordered substitution into alternating unit cells parallel to the crystallographic c-axis and by a small shear of the type 〈100〉 {011}. The four different orientational variants of this monoclinic phase with respect to the parent tetragonal phase are arranged into two distinct colonies of twin-related plates. The observation that Nd2Fe14B can undergo a displacive solid state transformation has broad implications for the entire field of Nd2Fe14B permanent magnets.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Givord, D., Li, H. S., and Moreau, J. M., Solid State Commun. 50, 497 (1984).CrossRefGoogle Scholar
2.Herbst, J. F., Croat, J. J., Pinkerton, F. E., and Yelon, W. B., Phys. Rev. B 29, 4176 (1984).CrossRefGoogle Scholar
3.Buschow, K. H. J., in High Performance Permanent Magnet Materials, edited by Sankar, S. G., Herbst, J. F., and Noon, N. C. (Mater. Res. Soc. Symp. Proc. 96, Pittsburgh, PA, 1987), p. 1; K. H. J. Buschow, Mater. Sci. Rep. 1, 3 (1986).Google Scholar
4.Boltich, E., Oswald, E., Huang, M. Q., Wallace, W. E., and Burzo, E., J. Appl. Phys. 57, 4106 (1985).CrossRefGoogle Scholar
5.Ormerod, J., J. Less-Common Met. 111, 49 (1985).CrossRefGoogle Scholar
6.Chu, T-Y., Rabenberg, L., and Mishra, R. K., J. Appl. Phys. 69, 6046 (1991).CrossRefGoogle Scholar
7.Sagawa, M., Tenaud, P., Vial, F., and Hiraga, K., IEEE Trans. Magn. 26, 1957 (1990).CrossRefGoogle Scholar
8.Fidler, J. and Bernardi, J., Proc. of the 1991 Joint MMM-Intermag Conference, Pittsburgh, PA, June 1991; J. Appl. Phys. (1991, in press).Google Scholar
9.Chu, T-Y., Rabenberg, L., and Mishra, R. K., J. Magn. and Magn. Mater. 84, 88 (1990).Google Scholar
10.Wolfers, P., J. Appl. Cryst. 23, 554 (1990).CrossRefGoogle Scholar
11.Obbade, S., Thesis, Université Joseph Fourier–Grenoble I (1991).Google Scholar
12.Gjønnes, G. and Moodie, A. F., Acta Cryst. 19, 65 (1965).CrossRefGoogle Scholar
13.Khatchaturyan, A. G., Theory of Structural Transformations in Solids (J. Wiley and Sons, New York, 1983), pp. 368407.Google Scholar
14.Zhang, B. and Soffa, W. A., IEEE Trans. Magn. 26, 1389 (1990).CrossRefGoogle Scholar