Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T14:54:35.794Z Has data issue: false hasContentIssue false

On controlled solidification studies of some TiO2 binary alloys

Published online by Cambridge University Press:  31 January 2011

C.T. Yen
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
D.O. Nason*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
W.A. Tiller
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
*
a)EGG–Santa Barbara, 130 Robin Hill Road, Goleta, California 93117.
Get access

Abstract

TiO2 single crystal fibers in the 1 mm diameter range were pulled from different alloy melts using the laser heated pedestal melting technique. The alloying elements studied were CaO, MnO, MgO, SiO2, FeO, and Al2O3. Phase diagram solute partition coefficient, k0, maximum solid solubility limit, CS(max), eutectic concentration, CE, and eutectic temperature, TE, were determined for each of these alloys. Solute redistribution effects in the solid, controlled precipitation in the solid, smooth solid-liquid interfaces in the presence of high melt concentrations and substantial crystal broadening by fluid migration up the solid from the melt all indicated the existence of a very strong thermodynamic field and a large solid diffusion coefficient operating in the solid behind the solid/liquid interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Feigelson, R. S., in Crystal Growth of Electronic Materials, edited by Kaldis, E. (North Holland, New York, 1985), Chap. 11.Google Scholar
2.Feigelson, R. S., Kway, W. L., and Route, R. K., Optical Engineering 24, 1102 (1985).Google Scholar
3.Feigelson, R. S., J. Cryst. Growth 79, 669 (1986).CrossRefGoogle Scholar
4.Luh, Y. S., Fejer, M. M., Byer, R. L., and Feigelson, R. S., J. Cryst. Growth 85, 264 (1987).CrossRefGoogle Scholar
5.Nason, D.O., Yen, C.T., Feigelson, R. S., and Tiller, W.A., Rev. Sci. Instrum. 61, 1024 (1990).CrossRefGoogle Scholar
6.Nason, D.O., Yen, C.T., and Tiller, W.A., J. Cryst. Growth 106, 221 (1990).CrossRefGoogle Scholar
7.Tiller, W. A., The Science of Crystallization: Microscopic Interfacial Phenomena (Cambridge University Press, London, 1989), Chap. 1.Google Scholar
8.Luh, Y. S., Feigelson, R. S., Fejer, M. M., and Byer, R. L., J. Cryst. Growth 78, 135 (1986).CrossRefGoogle Scholar
9.D'yakov, V.A., Shumov, D. P., Rashkovish, L.N., and Aleksandrovskii, A.L., Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 49, 2418 (1985).Google Scholar
10.Jindal, B.K. and Tiller, W.A., Surf. Sci. 9, 137 (1968); J. Colloid Interface Sci. 39, 339 (1972).CrossRefGoogle Scholar
11.Tiller, W.A., J. Cryst. Growth 70, 13 (1984).CrossRefGoogle Scholar
12.Sasaki, Jun, Peterson, N. L., and Hoshino, K., Phys. Chem. Solids 46, 1267 (1985).CrossRefGoogle Scholar
13.Iguchi, E. and Yajima, K., J. Phys. Soc. Jpn. 32, 1415 (1972).CrossRefGoogle Scholar
14.Levin, E. M., McMurdie, H. F., and Hall, F. P., Phase Diagrams for Ceramists (The American Ceramic Society, Westerville, OH, 1956).Google Scholar
15.Tiller, W.A. and Yen, C.T., J. Cryst. Growth 109, 120 (1991).CrossRefGoogle Scholar