Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T14:23:24.115Z Has data issue: false hasContentIssue false

On the chemical diffusion in layered thin films containing amorphous Co–Zr, Ni–Zr, and Fe–Zr

Published online by Cambridge University Press:  31 January 2011

N. Karpe
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
J. B⊘ttiger
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
A.L. Greer
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
J. Janting
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
K. Kyllesbech Larsen
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
Get access

Abstract

The chemical diffusion in thin trilayer films of TM–TM100−xZrx–TM with an amorphous middle layer where TM = Co, Ni, or Fe and in amorphous Fe–Zr and Ni–Zr films with composition gradients has been investigated using Rutherford backscattering spectrometry. The growth of the amorphous layer in the trilayers, due to in-diffusion of cobalt and nickel, is initially found to be proportional to the square root of the time, t1/2, and subsequently found to level off before the compositions corresponding to metastable equilibria are reached. Irradiation, with 500 keV Xe+ ions, is found to promote the in-diffusion. This behavior is discussed in terms of structural relaxation effects and their influence on the metastable equilibrium. In amorphous Fe–Zr the chemical diffusivity is observed to be very sluggish. Contrary to the behavior in Co–Zr and Ni–Zr trilayers, the direction of the iron diffusion in Fe–Zr trilayers suggests a broad positive peak in the Gibbs free energy at a composition around 50 at. % Zr. It is argued that the sluggish chemical diffusivity of iron is directly related to the unusual composition-dependence of the Gibbs free energy for amorphous Fe–Zr.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2.Samwer, K., Phys. Rep. 161, 1 (1988).CrossRefGoogle Scholar
3.Stephenson, G. B., Acta Metall. 36, 2663 (1988).CrossRefGoogle Scholar
4.Johnson, W. C., in Multilayers: Synthesis, Properties, and Nonelectronic Applications, edited by Barbee, T. W., Spaepen, F., and Greer, L. (Mater. Res. Soc. Symp. Proc. 103, Pittsburgh, PA, 1988), p. 61.Google Scholar
5.Atzmon, M., Phys. Rev. Lett. 65, 2889 (1990).CrossRefGoogle Scholar
6.Greer, A. L., Dyrbye, K., Andersen, L-U. Aaen, Somekh, R. E., Bøttiger, J., and Janting, J., in Thin Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. L. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), p. 3.Google Scholar
7.Jost, W., Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1960).Google Scholar
8.Hahn, H., Averback, R. S., and Rothman, S. J., Phys. Rev. B 33, 8825 (1986).CrossRefGoogle Scholar
9.Hoshino, K., Averback, R. S., Hahn, H., and Rothman, S. J., J. Mater. Res. 3, 55 (1988).CrossRefGoogle Scholar
10.Cahn, R. W., Coll de Physique (France) C4, 3 (1990).Google Scholar
11.Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metal: transition metal alloys (North Holland Physics Publ., 1989).Google Scholar
12.Darken, L. S., Trans. AIME 175, 184 (1948); see also D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, New York, 1981).Google Scholar
13.Horvath, J., Pfaler, K., Ulfert, W., Frank, W., and Kronmuller, H., Mater. Sci. Forum 15–18, 523 (1987).CrossRefGoogle Scholar
14.Karpe, N., Bøttiger, J., Janting, J., and Larsen, K. Kyllesbech, Philos. Mag. Lett. 63, 309 (1991).CrossRefGoogle Scholar
15.Krebs, H. U., Webb, D. J., and Marshall, A. F., Phys. Rev. B 35, 5392 (1987).CrossRefGoogle Scholar
16.Hillert, M., "Lecture Notes on Alloying Theory", Royal Inst. of Technology, Stockholm, 1989.Google Scholar
17.Clemens, B. M. and Suchoski, M. J., Appl. Phys. Lett. 47, 943 (1985).CrossRefGoogle Scholar
18.Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
19.Gosele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
20.Andersen, L. U. Aaen, Bøttiger, J., Greer, A. L., Janting, J., Karpe, N., Larsen, K. K., and Somekh, R. E., Mater. Sci. Eng., 133A, 415 (1991).CrossRefGoogle Scholar
21.Rehn, L. E. and Okamoto, P. R., Nucl. Instrum. Methods B39, 104 (1989).CrossRefGoogle Scholar
22.Bøttiger, J., Pampus, K., and Torp, B., Europhys. Lett. 4, 915 (1987).CrossRefGoogle Scholar
23.Atzmon, M., Unruh, K. M., and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
24.Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar