Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:22:05.841Z Has data issue: false hasContentIssue false

On the effect of precipitates on the cyclic deformation behavior of an Al–Mg–Si alloy

Published online by Cambridge University Press:  11 September 2017

Haichun Jiang
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen University, Aachen 52056, Germany
Stefanie Sandlöbes*
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen University, Aachen 52056, Germany
Günter Gottstein
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen University, Aachen 52056, Germany
Sandra Korte-Kerzel*
Affiliation:
Institut für Metallkunde und Metallphysik, RWTH Aachen University, Aachen 52056, Germany
*
a) Address all correspondence to these authors. e-mail: sandloebes@imm.rwth-aachen.de
Get access

Abstract

Fatigue is one of the major failure modes of structural materials. While the effects of strengthening precipitates on the mechanical properties of heat treatable aluminum alloys during forming operations are well-studied, only little is known about the related mechanisms during fatigue. We study the influence of precipitates during low cycle fatigue of an Al–Si–Mg alloy by mechanical testing and microstructure characterisation using (scanning) transmission electron microscopy. Specifically, we have investigated under-aged, peak-aged, and over-aged precipitation states. The experiments reveal considerable influence of the precipitate state on the mechanical properties and the formed dislocation structures. Under-aged AA6016 experiences cyclic hardening accompanied by dynamic precipitation and precipitate growth during cyclic deformation, whereas peak-aged AA6016 shows a saturated cyclic stress behavior and the formation of a ‘prevein’-like dislocation structure aligned along [001]Al directions. Over-aged AA6016 exhibits cyclic softening, which is assumed to be due to frequent Orowan-looping of dislocations around incoherent precipitates.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mathias Göken

References

REFERENCES

Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., and Vieregge, A.: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37 (2000).Google Scholar
Edwards, G.A., Stiller, K., Dunlop, G.L., and Couper, M.J.: The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998).Google Scholar
Marioara, C.D., Andersen, S.J., Jansen, J., and Zandbergen, H.W.: The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 51, 789 (2003).Google Scholar
Mughrabi, H.: Fatigue, an everlasting materials problem-still en vogue. Procedia Eng. 2, 3 (2010).Google Scholar
Campbell, F.C.: Elements of Metallurgy and Engineering Alloys (ASM International, Materials Park, Ohio, 2008).Google Scholar
Hutchinson, C.R., De Geuser, F., Chen, Y., and Deschamps, A.: Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering. Acta Mater. 74, 96 (2014).Google Scholar
Nandy, S., Sekhar, A.P., Kar, T., Ray, K.K., and Das, D.: Influence of ageing on the low cycle fatigue behaviour of an Al–Mg–Si alloy. Philos. Mag. 97, 1 (2017).Google Scholar
Tsao, C.S., Chen, C.Y., Jeng, U.S., and Kuo, T.Y.: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 54, 4621 (2006).Google Scholar
Yang, W., Huang, L., Zhang, R., Wang, M., Li, Z., Jia, Y., Lei, R., and Sheng, X.: Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates. J. Alloys Compd. 514, 220 (2012).Google Scholar
Torsæter, M., Hasting, H.S., Lefebvre, W., Marioara, C.D., Walmsley, J.C., Andersen, S.J., and Holmestad, R.: The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys. J. Appl. Phys. 108, 073527 (2010).Google Scholar
De Geuser, F., Lefebvre, W., and Blavette, D.: 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos. Mag. Lett. 86, 227 (2006).Google Scholar
Bryant, J.D.: The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet. Metall. Mater. Trans. A 30 (1999).CrossRefGoogle Scholar
Pogatscher, S., Antrekowitsch, H., Werinos, M., Moszner, F., Gerstl, S.S.A., Francis, M.F., Curtin, W.A., Löffler, J.F., and Uggowitzer, P.J.: Diffusion on demand to control precipitation aging: Application to Al–Mg–Si alloys. Phys. Rev. Lett. 112, 225701 (2014).Google Scholar
Guinier, A.: Structure of age-hardened aluminium–copper alloys. Nature 142, 569 (1938).CrossRefGoogle Scholar
Preston, G.D.: Structure of age-hardened aluminium–copper alloys. Nature 142, 570 (1938).Google Scholar
Matsuda, K., Naoi, T., Fujii, K., Uetani, Y., Sato, T., Kamio, A., and Ikeno, S.: Crystal structure of the β″ phase in an Al–1.0 mass% Mg2Si–0.4 mass% Si alloy. Mater. Sci. Eng., A 262, 232 (1999).Google Scholar
Andersen, S.J., Marioara, C.D., Torsæter, M., Bjørge, R., Ehlers, F.J.H., Holmestad, R., Reiso, O., and Røyset, J.: Behind structure and relation of precipitates in Al–Mg–Si and related alloys: In Proceeding Proceedings of the 12th International Conference on Aluminium Alloys, edited by Kumai, S., Umezawa, O., Takayama, Y., Tsuchida, T., and Sato, T.. (Yokohama, Japan); p. 413.Google Scholar
Lynch, J.P., Brown, L.M., and Jacobs, M.H.: Microanalysis of age-hardening precipitates in aluminium alloys. Acta Metall. 30, 1389 (1982).CrossRefGoogle Scholar
Jacobs, M.: The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos. Mag. 26, 1 (1972).Google Scholar
Marioara, C.D., Nordmark, H., Andersen, S.J., and Holmestad, R.: Post-β″ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41, 471 (2006).Google Scholar
Vorren, O. and Ryum, N.: Cyclic deformation of Al-single crystals at low constant plastic strain amplitudes. Acta Metall. 35, 855 (1987).Google Scholar
Videm, M. and Ryum, N.: Cyclic deformation of [001] aluminium single crystals. Mater. Sci. Eng., A 219, 1 (1996).Google Scholar
Fujii, T., Sawatari, N., Onaka, S., and Kato, M.: Cyclic deformation of pure aluminum single crystals with double-slip orientations. Mater. Sci. Eng., A 387, 486 (2004).CrossRefGoogle Scholar
Li, P., Li, S., Wang, Z., and Zhang, Z.: Cyclic deformation behaviors of $\left[ {\bar 579} \right]$ -oriented Al single crystals. Metall. Mater. Trans. A 41, 2532 (2010).Google Scholar
Wang, J., Zhu, Z.G., Fang, Q.F., and Liu, G.D.: The influence of the crystallographic orientation on the behavior of fatigue in Al single crystals. Mater. Res. Bull. 34, 407 (1999).Google Scholar
Vorren, O. and Ryum, N.: Cyclic deformation of Al single crystals: Effect of the crystallographic orientation. Acta Metall. 36, 1443 (1988).Google Scholar
Xia, Y.B.: The effect of crystal orientation on mechanical behavior during fatigue in aluminium single crystals. Scr. Metall. 29, 999 (1993).Google Scholar
Giese, A. and Estrin, Y.: Mechanical behaviour and microstructure of fatigued aluminium single crystals. Scr. Metall. 28, 803 (1993).Google Scholar
Zhai, T., Martin, J.W., and Briggs, G.A.D.: Fatigue damage at room temperature in aluminium single crystals—II. TEM. Acta Mater. 44, 1729 (1996).CrossRefGoogle Scholar
Nellessen, J., Sandlöbes, S., and Raabe, D.: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Mater. Sci. Eng., A 668, 166 (2016).CrossRefGoogle Scholar
Zhai, T., Martin, J.W., Briggs, G.A.D., and Wilkinson, A.J.: Fatigue damage at room temperature in aluminium single crystals—III. Lattice rotation. Acta Mater. 44, 3477 (1996).Google Scholar
Zhai, T., Martin, J.W., and Briggs, G.A.D.: Fatigue damage in aluminum single crystals—I. On the surface containing the slip burgers vector. Acta Metall. 43, 3813 (1995).Google Scholar
Chandler, H.D. and Bee, J.V.: Cyclic strain induced precipitation in a solution treated aluminium alloy. Acta Metall. 35, 2503 (1987).Google Scholar
Srivatsan, T.S., Sriram, S., and Daniels, C.: Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Eng. Fract. Mech. 56, 531 (1997).CrossRefGoogle Scholar
Lee, D.H., Park, J.H., and Nam, S.W.: Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater. Sci. Technol. 15, 450 (1999).Google Scholar
Lam, P.C., Srivatsan, T.S., Hotton, B., and Al-Hajri, M.: Cyclic stress response characteristics of an aluminum–magnesium–silicon alloy. Mater. Lett. 45, 186 (2000).Google Scholar
Borrego, L.P., Abreu, L.M., Costa, J.M., and Ferreira, J.M.: Analysis of low cycle fatigue in AlMgSi aluminium alloys. Eng. Failure Anal. 11, 715 (2004).Google Scholar
Yahya, M.M., Mallik, N., and Chakrabarty, I.: Low cycle fatigue (LCF) behavior of AA6063 aluminium alloy at room temperature. Int. J. Emerging Adv. Res. Technol. 5, 100 (2015).Google Scholar
Azzam, D., Menzemer, C.C., and Srivatsan, T.S.: The fracture behavior of an Al–Mg–Si alloy during cyclic fatigue. Mater. Sci. Eng., A 527, 5341 (2010).Google Scholar
Ding, X-q., He, G-q., and Chen, C-s.: Study on the dislocation sub-structures of Al–Mg–Si alloys fatigued under non-proportional loadings. J. Mater. Sci. 45, 4046 (2010).Google Scholar
Takahashi, Y., Shikama, T., Yoshihara, S., Aiura, T., and Noguchi, H.: Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Mater. 60, 2554 (2012).Google Scholar
Nandy, S., Sekhar, A.P., Das, D., Hossain, S.J., and Ray, K.K.: Influence of dynamic precipitation during low cycle fatigue of under-aged AA6063 alloy. Trans. Indian Inst. Met. 69, 319 (2016).Google Scholar
Laird, C., Langelo, V.J., Hollrah, M., Yang, N.C., and De La Veaux, R.: The cyclic stress–strain response of precipitation hardened Al–15 wt% Ag alloy. Mater. Sci. Eng. 32, 137 (1978).Google Scholar
Pahl, R.G. and Cohen, J.B.: Effects of fatigue on the GP zones in Al–Zn alloys. Metall. Mater. Trans. A 15, 1519 (1984).Google Scholar
Farrow, A. and Laird, C.: Precipitation in solution-treated aluminium–4 wt% copper under cyclic strain. Philos. Mag. 90, 3549 (2010).Google Scholar
Han, W.Z., Chen, Y., Vinogradov, A., and Hutchinson, C.R.: Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy. Mater. Sci. Eng., A 528, 7410 (2011).Google Scholar
Hörnqvist, M. and Karlsson, B.: Dynamic strain ageing and dynamic precipitation in AA7030 during cyclic deformation. Procedia Eng. 2, 265 (2010).Google Scholar
Williams, D.B. and Carter, C.B.: The Transmission Electron Microscope (Springer US, New York, 1996).Google Scholar
Gottstein, G.: Physical Foundations of Materials Science (Springer Science & Business Media, New York, 2013).Google Scholar
Dieter, G.E. and Bacon, D.J.: Mechanical Metallurgy (McGraw-Hill, New York, 1986).Google Scholar
Deschamps, A., Livet, F., and Brechet, Y.: Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 47, 281 (1998).Google Scholar
Deschamps, A. and Brechet, Y.: Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293 (1998).Google Scholar
Shercliff, H.R. and Ashby, M.F.: A process model for age hardening of aluminium alloys—I. The model. Acta Metall. 38, 1789 (1990).Google Scholar
Shercliff, H.R. and Ashby, M.F.: A process model for age hardening of aluminium alloys—II. Applications of the model. Acta Metall. 38, 1803 (1990).CrossRefGoogle Scholar
Esmaeili, S. and Lloyd, D.J.: Modeling of precipitation hardening in pre-aged AlMgSi (Cu) alloys. Acta Mater. 53, 5257 (2005).Google Scholar
Simar, A., Brechet, Y., De Meester, B., Denquin, A., and Pardoen, T.: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta Mater. 55, 6133 (2007).CrossRefGoogle Scholar
Myhr, O., Grong, Ø., and Andersen, S.: Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49, 65 (2001).Google Scholar
Myhr, O.R., Grong, Ø., Fjaer, H.G., and Marioara, C.D.: Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater. 52, 4997 (2004).Google Scholar
Esmaeili, S., Lloyd, D.J., and Poole, W.J.: Modeling of precipitation hardening for the naturally aged Al–Mg–Si–Cu alloy AA6111. Acta Mater. 51, 3467 (2003).Google Scholar
Mao, F.X., Bollmann, C., Brüggemann, T., Liang, Z.Q., Jiang, H.C., and Mohles, V.: Modelling of the age-hardening behavior in AA6xxx within a through-process modelling framework: In 15th International Conference on Aluminum Alloys, edited by Liu, Q., Nie, J.-F., Sanders, R., Jia, Z., and Cao, L.. (Chongqing, China); p. 640.Google Scholar
Delmas, F., Casanove, M.J., Lours, P., Couret, A., and Coujou, A.: Quantitative TEM study of the precipitation microstructure in aluminium alloy Al (MgSiCu) 6056 T6. Mater. Sci. Eng., A 373, 80 (2004).Google Scholar
Fribourg, G., Bréchet, Y., Deschamps, A., and Simar, A.: Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mater. 59, 3621 (2011).Google Scholar
Estrin, Y. and Lücke, K.: Void nucleation in the wake of a moving grain boundary. Scr. Metall. 19, 221 (1985).Google Scholar
Deschamps, A., Brechet, Y., Necker, C.J., Saimoto, S., and Embury, J.D.: Study of large strain deformation of dilute solid solutions of Al–Cu using channel-die compression. Mater. Sci. Eng., A 207, 143 (1996).Google Scholar
Deschamps, A., Niewczas, M., Bley, F., Brechet, Y., Embury, J.D., Sinq, L.L., Livet, F., and Simon, J.P.: Low-temperature dynamic precipitation in a supersaturated AI–Zn–Mg alloy and related strain hardening. Philos. Mag. A 79, 2485 (1999).Google Scholar
Waldron, G.W.J.: A study by transmission electron microscopy of the tensile and fatigue deformation of aluminum–magnesium alloys. Acta Metall. 13, 897 (1965).Google Scholar
Mughrabi, H.: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431 (2009).Google Scholar
Harvey, S.E., Marsh, P.G., and Gerberich, W.W.: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. 42, 3493 (1994).Google Scholar
Gerberich, W.W., Harvey, S.E., Kramer, D.E., and Hoehn, J.W.: Low and high cycle fatigue—A continuum supported by AFM observations. Acta Mater. 46, 5007 (1998).Google Scholar
Cretegny, L. and Saxena, A.: AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper. Acta Mater. 49, 3755 (2001).Google Scholar
Shyam, A. and Milligan, W.W.: A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy. Acta Mater. 53, 835 (2005).Google Scholar