Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T02:07:42.959Z Has data issue: false hasContentIssue false

On the indentation recovery and fleeting hardness of polymers

Published online by Cambridge University Press:  03 March 2011

Catherine A. Tweedie
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Krystyn J. Van Vliet*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a) Address all correspondence to this author. e-mail: krystyn@mit.edu
Get access

Abstract

Accurate mechanical characterization of viscoelastoplastic materials in small volumes is required for the development of polymeric thin film, nanocomposite, and biomedical applications. Instrumented indentation-based approaches are increasingly implemented to quantify the resistance to permanent deformation of such systems via time-independent analyses. Here, we quantify the significant post-indentation recovery of several bulk polymers via time-lapsed scanning-probe microscopy under ambient conditions, indicating up to 80% recovery of both indentation depth and volume within 48 h. This viscoelastic response demonstrates that indentation hardness values for these polymers are accurate within 10% for less than 5 min to 3.5 days post-indentation, neglecting any other analytical or experimental errors. Further, although the extent and rates of volumetric recovery depend strongly on loading history and polymer structure/physical properties, deformation resistance inferred from indentation hardness does not quantitatively or qualitatively predict recoverable work or residual deformation of polymer surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F., Meyers, G.F.: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
2.Briscoe, B.J., Sebastian, K.S.The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. London Ser. A 452, 439457 (1996).Google Scholar
3.Briscoe, B.J., Evans, P.D., Biswas, S.K., Sinha, S.K.: The hardnesses of poly(methylmethacrylate). Tribology International 29, 93 (1996).CrossRefGoogle Scholar
4.Klapperich, C., Komvopoulos, K., Pruitt, L.: Nanomechanical properties of polymers determined from nanoindentation experiments. J. Tribol-T Asme. 123, 624 (2001).CrossRefGoogle Scholar
5.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
6.Chang, B.T.A., Li, J.C.M.: Indentation recovery of amorphous materials. Scripta Metall Mater. 13, 51 (1979).CrossRefGoogle Scholar
7.Low, I.M.: Effects of load and time on the hardness of a viscoelastic polymer. Mater. Res. Bull. 33, 1753 (1998).CrossRefGoogle Scholar
8.Lorenzo, V., Perena, J.M., Fatou, J.G., Mendezmorales, J.A., Aznarez, J.A.: Delayed elastic recovery of hardness indentations in polyethylene. J. Mater. Sci. 23, 3168 (1988).CrossRefGoogle Scholar
9.Lorenzo, V., Perena, J.M., Fatou, J.M.G., Mendezmorales, J.A., Aznarez, J.A.: Interference microscopy measurements of depth at Vickers hardness indentations in polyethylene. J. Mater. Sci. Lett. 6, 756 (1987).CrossRefGoogle Scholar
10.Chang, B.T.A., Li, J.C.M.: Indentation recovery of atactic polystyrene. J. Mater. Sci. 15, 1364 (1980).CrossRefGoogle Scholar
11.Kung, T.M., Li, J.C.M.: Recovery processes in amorphous polymers. J. Mater. Sci. 22, 3620 (1987).CrossRefGoogle Scholar
12.Yang, F.Q., Zhang, S.L., Li, J.C.M.: Impression recovery of amorphous polymers. J. Electron. Mater. 26, 859 (1997).CrossRefGoogle Scholar
13.Tweedie, C.A., Smith, J.F., Van Vliet, K.J.: Nanomechanics of Polymer Energy Absorption, (Materials Research Society, Boston, MA, 2004).Google Scholar
14.Young, R.J., Lovell, P.A.: Introduction to Polymers (Chapman & Hall, New York, 1991).CrossRefGoogle Scholar
15.Brulet, A., Boue, F., Cotton, J.P.: About the experimental determination of the persistence length of wormlike chains of polystyrene. J. Phys. II 6, 885 (1996).Google Scholar
16.Bicerano, J.: Chain stiffness of liquid crystalline polyesters. 1. Characteristic ratio and persistence length. Comput. Theor. Polym. Sci. 8, 9 (1998).CrossRefGoogle Scholar
17.Nikolov, S., Doghri, I.: A micro/macro constitutive model for the small-deformation behavior of polyethylene. Polymer 41, 1883 (2000).CrossRefGoogle Scholar
18.Liu, Y.G., Bo, S.Q., Zhu, Y.J., Zhang, W.H.: Studies on the intermolecular structural heterogeneity of a propylene-ethylene random copolymer using preparative temperature rising elution fractionation. J. Appl. Polym. Sci. 97, 232 (2005).CrossRefGoogle Scholar
19.Dinelli, F., Leggett, G.J., Shipway, P.H.: Nanowear of polystyrene surfaces: Molecular entanglement and bundle formation. Nanotechnology 16, 675 (2005).CrossRefGoogle Scholar
20.Soles, C.L., Douglas, J.F., Wu, W.L., Dimeo, R.M.: Incoherent neutron scattering as a probe of the dynamics in molecularly thin polymer films. Macromolecules 36, 373 (2003).CrossRefGoogle Scholar
21.Nielson, L.E.: Mechanical Properties of Polymers and Composites, (Marcel Dekker, New York, 1974).Google Scholar
22.Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).CrossRefGoogle Scholar
23.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
24.Wang, L.G., Ganor, M., Rokhlin, S.I., Grill, A.: Nanoindentation analysis of mechanical properties of low to ultralow-dielectric constant SiCOH films. J. Mater. Res. 20, 2080 (2005).CrossRefGoogle Scholar