Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T21:12:29.146Z Has data issue: false hasContentIssue false

On the nature of the oxygen-related defect in aluminum nitride

Published online by Cambridge University Press:  31 January 2011

J. H. Harris
Affiliation:
BP Research, Warrensville Research Center, Cleveland, Ohio 44128
R. A. Youngman
Affiliation:
BP Research, Warrensville Research Center, Cleveland, Ohio 44128
R. G. Teller
Affiliation:
BP Research, Warrensville Research Center, Cleveland, Ohio 44128
Get access

Abstract

The oxygen-related defect in an aluminum nitride (AIN) single crystal and in polycrystalline ceramics is investigated utilizing photoluminescence spectroscopy, thermal conductivity measurements, x-ray diffraction lattice parameter measurements, and transmission electron microscopy. The results of these measurements indicate that at oxygen concentrations near 0.75 at.%, a transition in the oxygen accommodating defect occurs. On both sides of this transition, simple structural models for the oxygen defect are proposed and shown to be in good agreement with the thermal conductivity and lattice parameter measurements, and to be consistent with the formation of various extended defects (e.g., inversion domain boundaries) at higher oxygen concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1McCauley, J. W. and Corbin, N. D., Progress in Ceramics, edited by Riley, F. L. (Martinus Nijhoff Publishers, Boston, MA, 1983), p. 111.CrossRefGoogle Scholar
2Jack, K. H., J. Mater. Sci. 11, 1135 (1976).CrossRefGoogle Scholar
3Bartram, S. F. and Slack, G. A., Acta Cryst. B35, 2281 (1979).CrossRefGoogle Scholar
4Sakai, T., Sintering —Theory and Practice, edited by Pejounik, S. and Ristic, M. M. (Elsevier Scientific Publishing, Amsterdam, 1982), p. 591.Google Scholar
5Van Tendeloo, G., Faber, K. T., and Thomas, G., J. Mater. Sci. 18, 525 (1983).CrossRefGoogle Scholar
6McCauley, J. W., Krishnan, K. M., Rai, R. S., Thomas, G., Zangville, A., Doser, R. W., and Corbin, N. D., Ceramic Microstructures '86, edited by Pask, J. and Evans, A. (Plenum Press, New York, 1988), p. 577.Google Scholar
7Pacesova, S. and Jastrabik, L., Czech. J. Phys. B29, 913 (1979).CrossRefGoogle Scholar
8Pastrnak, J. and Roskovcova, L., Phys. Status Solidi 26, 591 (1968).CrossRefGoogle Scholar
9Ohuchi, F. S. and French, R. H., J. Vac. Sci. Technol. A6, 1695 (1988).CrossRefGoogle Scholar
10Pastrnak, J., Pocesova, S., and Roskovcova, L., Czech. J. Phys. B24, 1149 (1974).CrossRefGoogle Scholar
11Harris, J. H. and Youngman, R. A., in Advanced Electronic Packaging Materials, edited by Partridge, J., Li, C-Y., Chen, C. J., and Barfknecht, A. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 253.Google Scholar
12Kuramoto, N., Taniguchi, H., Numata, Y., and Aso, I., Yogyo-Kyokai-Shi 93, 41 (1985).CrossRefGoogle Scholar
13Slack, G. A., Tanzilli, R. A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids 48, 641 (1987).CrossRefGoogle Scholar
14Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
15Kurokawa, Y., Utsumi, K., and Takamizawa, H., J. Am. Ceram. Soc. 71, 588 (1988).CrossRefGoogle Scholar
16Virkar, A., Jackson, T. B., and Cutler, R., J. Am. Ceram. Soc. 72, 203 (1989).CrossRefGoogle Scholar
17Youngman, R. A., Harris, J. H., and Chernoff, D. A., Ceramic Transactions 5, 399 (1989).Google Scholar
18Jeffrey, G. A., Parry, G. S., and Mozzi, R. L., J. Chem. Phys. 25, 1024 (1956).CrossRefGoogle Scholar
19Haase, J., Freude, D., Frohlich, T., Himpel, G., Kerbe, F., Lippmaa, E., Pfeifer, H., Sarv, P., Schafer, H., and Seiffert, B., Chem. Phys. Lett. 156, 328 (1989).CrossRefGoogle Scholar
20Dinwiddie, R. and Onn, D., in Electronic Packaging Materials, edited by Partridge, J., Li, C-Y., Chen, C. J., and Barfknecht, A. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 241.Google Scholar
21Enck, R. C. and Harris, R. D., ibid., p. 235.Google Scholar
22Sachet, J. P., Laval, J. Y., and Broussaud, D., Silicates Industriels 7–8, 113 (1989).Google Scholar
23Youngman, R. A., Harris, J. H., Labun, P. A., and Graham, R. J., in Electronic Packaging Materials, edited by Partridge, J., Li, C-Y., Chen, C. J., and Barfknecht, A. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1990), p. 271.Google Scholar
24McKernan, S and Carter, C. B, ibid., p. 259.Google Scholar
25 A. Westwood and M. Notis, ibid., p. 265.Google Scholar
26Abeles, B., Phys. Rev. 131, 1906 (1963).CrossRefGoogle Scholar
27Slack, G. A. and McNelly, T. F., J. Cryst. Growth 34, 263 (1976).CrossRefGoogle Scholar
28Enck, R. C., Harris, R. D., and Youngman, R. A., Ceramic Transactions 5, 214 (1989).Google Scholar
29Wiles, D. B. and Young, R., J. Appl. Cryst. 14, 149 (1981).CrossRefGoogle Scholar
30Harris, J. H. and Youngman, R. A. (in preparation).Google Scholar
31Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).Google Scholar
32Schomaker, V. and Stevenson, D. P., J. Chem. Soc. 63, 37 (1941).CrossRefGoogle Scholar
33 We cannot rule out a different oxygen accommodation mechanism in the very low oxygen concentration range (<0.1%) because samples could not be prepared at this purity level.Google Scholar
34Klemens, P. G., Proc. Roy. Soc. (London) A208, 108 (1951).Google Scholar
35Klemens, P. G., Proc. Roy. Soc. (London) A68, 113 (1955).Google Scholar
36Klemens, P. G., Phys. Rev. 119, 507 (1960).CrossRefGoogle Scholar
37Callaway, J., Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
38Callaway, J. and vonBaeyer, H. C., Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
39Parrott, J. E., Proc. Roy. Soc. (London) 81, 726 (1963).CrossRefGoogle Scholar
40Engineering Property Data on Selected Ceramics (Metals and Ceramics Information Center, Battelle Institute, Columbus, OH, 1976), p. 15.Google Scholar
41Ratsifaritana, C. A. and Klemens, P. G., Int. J. Thermophysics 8, 737 (1987).CrossRefGoogle Scholar
42Noguchi, T. and Mizuno, M., Kogyo Kogaku Zasshi 70, 839 (1967).Google Scholar
43Denanot, M. F. and Rabier, J., J. Mater. Sci. 24, 1594 (1989).CrossRefGoogle Scholar
44Youngman, R. A., Proc. Elec. Micros. Soc. Amer., edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1988), p. 547.Google Scholar
45Hagege, S., Tanaka, S., and Ishida, Y., J. Jpn. Inst. Metals 52, 1192 (1988).CrossRefGoogle Scholar