Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:16:30.123Z Has data issue: false hasContentIssue false

On the role of penetration twins in the morphological development of vapor-grown diamond films

Published online by Cambridge University Press:  03 March 2011

M.A. Tamor
Affiliation:
Research Laboratory, Ford Motor Company, SRL/MD3028, Dearborn, Michigan 48121-2053
M.P. Everson
Affiliation:
Research Laboratory, Ford Motor Company, SRL/MD3028, Dearborn, Michigan 48121-2053
Get access

Abstract

Polycrystalline diamond films may be produced by chemical vapor deposition (CVD) with morphologies ranging from multimicron crystallites with well-defined facets and texture to nanocrystalline “cauliflower” nodules. While previous efforts to connect diamond film “quality” to growth conditions focus on competitive growth of non-diamond phases, we propose that twinning is a major controlling factor. We use geometric arguments to define the conditions under which a given twin can outgrow and bury the “parent” face on which it originated. We then show how the full spectrum of diamond crystallite shapes and film morphologies can be explained in terms of penetration twins without reference to the actual mechanistics of diamond growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
2Yarbrough, W. A. and Messier, R., Science 247, 688 (1990); Piekarczyk, W. and Yarbrough, W. A., J. Cryst. Growth 108, 583 (1991).CrossRefGoogle Scholar
3Butler, J. E. and Woodin, R. L., Philos. Trans. R. Soc. London A 342, 209 (1993).Google Scholar
4Wild, Ch., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990); Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samelenski, R., and Brenn, R., Diamond Relat. Mater. 2, 158 (1993).CrossRefGoogle Scholar
5Clausing, R. E., Heatherly, L., Horton, L. L., Specht, E. D., Begun, G. M., and Wang, Z. L., Diamond Relat. Mater. 1, 411 (1992). This twin was only recently conclusively confirmed as a (111) twin by topographic imaging in Everson, M. P., Tamor, M. A., Scholl, D., Stoner, B. R., Sahaida, S. R., and Bade, J. P., J. Appl. Phys. (in press).CrossRefGoogle Scholar
6Angus, J. C., Li, Z., Sunkara, M., Gat, R., Anderson, A. B., Mehandru, S. P., and Geis, M. W., Proc. 2nd Int. Symp. on Diamond Materials, Washington, DC, May 5–10, 1991 (The Electrochemical Society, Pennington, NJ, 1991), Vol. 91–8, pp. 125141.Google Scholar
7Angus, J. C., Sunkara, M., Sahaida, S. R., and Glass, J. T., J. Mater. Res. 7, 3001 (1992).CrossRefGoogle Scholar
8Although there are numerous discussions of penetration twinsin the literature, the associated definitions of a penetration twin (usually based on the nature of the grain boundary separating the two members of the twin pair) are not always identical. Forexample, see Cody, A. M. and Cody, R. D., J. Cryst. Growth 83, 485 (1987) or Takano, Y. and Nishida, T., Acta Crystallogr. A 28, s119 (1972).CrossRefGoogle Scholar
9Features that in retrospect can be identified as penetration twins do appear in the literature. For example, see Clausing, R. E., Heatherly, L., More, K. L., and Begun, G. M., Surf. Coating Technol. 39/40, 199 (1989).CrossRefGoogle Scholar
10Because the behavior of each reactor design is unique and there are several other less influential variables (such as gas pressure and flow rate, filament or plasma temperatures, and various geometric effects), quantifying these variables would be of use only to operators of reactors exactly identical to ours.Google Scholar
11van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar
12Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993); Stoner, B. R., Kao, C-t., Matta, D. M., and Glass, R. C., Appl. Phys. Lett. 62, 2347 (1993).CrossRefGoogle Scholar
13Ravi, K. V. and Joshi, A., Appl. Phys. Lett. 58, 246 (1991).CrossRefGoogle Scholar
14Okada, K., Komatsu, S., Ishigaki, T., Matsumoto, S., and Moriyoshi, Y., J. Appl. Phys. 71, 4920 (1992).CrossRefGoogle Scholar
15Everson, M. P. and Tamor, M. A., J. Mater. Res. 7, 1438 (1992).CrossRefGoogle Scholar