Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T02:00:05.114Z Has data issue: false hasContentIssue false

On the selective decoration of facets in metallic nanoparticles

Published online by Cambridge University Press:  16 May 2012

M.M. Mariscal*
Affiliation:
INFIQC/CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000, Córdoba, Argentina
O.A. Oviedo
Affiliation:
INFIQC/CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000, Córdoba, Argentina
E.P.M. Leiva
Affiliation:
INFIQC/CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000, Córdoba, Argentina
*
a)Address all correspondence to this author. e-mail: marmariscal@fcq.unc.edu.ar
Get access

Abstract

This work presents key modeling aspects that are central to the manipulation of the decoration of metallic nanoparticles by a thin shell of a metal of different chemical nature. The concept of underpotential deposition is generalized to nanoparticles. An all-atom model, taking into account many-body interactions by means of the embedded atom potential, was used to represent nanoparticles of different sizes and atomic adsorbates on them. A full set of state-of-the-art computer simulations are performed for a model system, showing that selective decoration of facets is possible. The trends observed in the present work are in good qualitative agreement with experimental data reported very recently.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Corain, B., Schmid, G., and Toshima, N.: Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control. (Elsevier B. V, Amsterdam, Netherlands, 2008).Google Scholar
2.Mariscal, M.M. and Dassie, S.A.: Recent Advances in Nanoscience. (Research Singpost, Trivandrum, India, 2007).Google Scholar
3.Feldheim, D.L. and Foss, C.A. Jr: Metal Nanoparticles, Synthesis, Characterization and Applications. (Marcel Dekker Inc., New York, NY 2002).Google Scholar
4.Sugimoto, T.: Monodispersed Nanoparticles. (Elsevier B. V, Amsterdam, Netherlands, 2001).Google Scholar
5.Peng, Z. and Yang, H.: Designer platinum nanoparticles: Shape, composition in alloys, nanostructure and electrocatalytic property. Nano Today 4, 143164 (2009).Google Scholar
6.Grzelczak, M., Pérez-Juste, J., Mulvaney, P., and Marzán, L.M.: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 17831791 (2008).CrossRefGoogle ScholarPubMed
7.Goubert, N., Ding, Y., Brust, M., Wang, Z.L., and Pileni, M-P.: A way to control the gold nanocrystals size: Using seeds with different sizes and subjecting them to mild annealing. ACS Nano 11, 36223628 (2009).CrossRefGoogle Scholar
8.Park, J., Joo, J., Kwon, S-G., . Jang, Y, and Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630 (2007).CrossRefGoogle ScholarPubMed
9.Finney, E.E. and Finke, R.G.: Nanocluster nucleation and growth kinetic and mechanistic studies: A review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 317, 351374 (2008).Google Scholar
10.Park, S., Yang, P., Corredor, P., and Weaver, M.J.: Transition metal coated nanoparticle films: Vibrational characterization with surface enhanced raman scattering. J. Am. Chem. Soc. 124(11), 24282429 (2002).CrossRefGoogle ScholarPubMed
11.Zou, S. and Weaver, M.J.: Surface-enhanced raman scattering on uniform transition-metal films: Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? Anal. Chem. 70, 23872395 (1998).CrossRefGoogle Scholar
12.Tang, H., Chen, J.H., Wang, M.Y., Nie, L.H., Kuang, Y.F., and Yao, S.Z.: Controlled synthesis platinum catalysts Au nanoparticles their electrocatalytic property methanol oxidation. Appl. Catal. A 275, 4348 (2004).CrossRefGoogle Scholar
13.Liu, P., Ge, X., Wang, R., Ma, H., and Ding, Y.: Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir 25, 561567 (2009).CrossRefGoogle ScholarPubMed
14.Jana, N.R., Gearheart, L., and Murphy, C.: Seed-mediated growth approach for shape controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template. J. Adv. Mater. 13, 13891393 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
15.Seo, D., Park, J.C., Song, H.: Polyhedral gold nanocrystals with oh symmetry: From octahedra to Cubes. J. Am. Chem. Soc. 128, 1486314870 (2006).CrossRefGoogle ScholarPubMed
16.Kou, X., Ni, W., Tsung, C.K., Chan, K., Lin, H.Q., Stucky, G.D., and Wang, J.: Growth of gold bipyramids with improved yields and their curvature-directed oxidation. Small 3, 21032113 (2007).CrossRefGoogle ScholarPubMed
17.Seo, D., Yoo, C.I., Park, J.C., Park, S.M., Ryu, S., and Song, H.: Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angew. Chem. Int. Ed. 47, 763767 (2008).CrossRefGoogle ScholarPubMed
18.Ming, T., Feng, W., Tang, Q., Wang, F., Sun, L., Wang, J., and Yan, C.: Growth of tetrahexahedral gold nanocrystals with high-Index facets. J. Am. Chem. Soc. 131, 1635016351 (2009).Google Scholar
19.Zhang, J., Langille, M.R., Personick, M.L., Zhang, K., Li, S., and Mirkin, C.A.: Concave cubic gold nanocrystals with high-Index facets. J. Am. Chem. Soc. 132, 1401214014 (2010).Google Scholar
20.Sun, J., Guan, M., Shang, T., Gao, C., Xu, Z., and Zhu, J.: Selective synthesis of gold cuboid and decahedral nanoparticles regulated and controlled by Cu2+ ions. Cryst. Growth Des. 8, 906910 (2008).Google Scholar
21.DeSantis, C.J., Peverly, A.A., Peters, D.G., and Skrabalak, S.E.: Octopods versus concave nanocrystals: Control of morphology by manipulating the kinetics of seeded growth via co-reduction. Nano Lett. 11, 21642168 (2011).Google Scholar
22.Lu, C-L., Prasad, K.S., Wu, H-L., . Ho, J.A, and Huang, M.H.: Au nanocube-directed fabrication of Au−Pd core−shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 1454614553 (2010).CrossRefGoogle ScholarPubMed
23.Zhang, H., Li, W., Jin, M., Zeng, J., Yu, T., Yang, D., and Xia, Y.: Controlling the morphology of Rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 11, 898903 (2011).Google Scholar
24.Selvakannan, P.R., Swami, A., Sathyanarayanan, D., Shirude, P.S., Pasricha, R., Mandale, A.B., and Sastry, M.: Synthesis of aqueous Au core−Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air−water interface. Langmuir 20, 78257836 (2004).CrossRefGoogle Scholar
25.Fonticelli, M.H., Corthey, G., Benitez, G.A., Salvarezza, R.C., Giovanetti, L.J., Requejo, F.G., and Shon, Y.S.: Preparation of ultrathin thiolate-covered bimetallic systems: From extended planar to nanoparticle surfaces. J. Phys. Chem. C 111, 93599364 (2007).Google Scholar
26.Personick, M.L., Langille, M.R., Zhang, J., and Mirkin, C.A.: Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 11, 33943398 (2011).Google Scholar
27.Tao, A.R., Habas, S., and Yang, P.: Shape control of colloidal metal nanocrystals. Small 4, 310325 (2008).CrossRefGoogle Scholar
28.Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788800 (1996).CrossRefGoogle Scholar
29.Sudha, V. and Sangaranarayanan, M.V.: Underpotential deposition of metals—progress and prospects in mModeling. J. Chem. Sci. 117, 207218 (2005).CrossRefGoogle Scholar
30.Leiva, E.P.M.: Recent developments in the theory of metal UPD. Electrochim. Acta. 41, 2206, (1996).CrossRefGoogle Scholar
31.Leiva, E.P.M.: Thermodynamic derivation and model calculations of the metal underpotential dependence on electron work function differences. J. Electroanal. Chem. 350, 114 (1993).CrossRefGoogle Scholar
32.Campbell, F.W., Zhou, Y., and Compton, R.G.: Thallium underpotential deposition on silver nanoparticles: size-dependent adsorption behavior. New J. Chem. 34, 187189 (2010).CrossRefGoogle Scholar
33.Campbell, F.W. and Compton, R.G.: Contrasting underpotential depositions of lead and Cadmium on silver Macroelectrodes and silver nanoparticle electrode arrays. Int. J. Electrochem. Sci. 5, 407413 (2010).CrossRefGoogle Scholar
34.Zhou, Y., Rees, N.V., and Compton, R.G.: Nanoparticle-electrode collision processes: The underpotential deposition of thallium on silver nanoparticles in aqueous solution. ChemPhysChem 12, 20852087 (2011).CrossRefGoogle ScholarPubMed
35.Oviedo, O.A., Leiva, E.P.M., and Mariscal, M.M.: Thermodynamic considerations and computer simulations on the spontaneous formation of core-shell nanoparticles under electrochemical conditions. Phys. Chem. Chem. Phys. 10, 35613568 (2008).Google Scholar
36.Oviedo, O.A., Negre, C.F.A., Mariscal, M.M., Sánchez, C.G., and Leiva, E.P.M.: Underpotential deposition on free nanoparticles: Its meaning and measurement. Electrochem. Commun. 16, 15 (2012).CrossRefGoogle Scholar
37.Oviedo, O.A., Leiva, E.P.M., and Rojas, M.I.: Energetic and entropic contributions to the underpotential/overpotential deposition shifts on single crystal surfaces from lattice dynamics. Electrochim. Acta 51, 35263536 (2006).CrossRefGoogle Scholar
38.Luque, N.B., Reinaudi, L., Serra, P., and Leiva, E.P.M.: Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations. Electrochim. Acta 54, 30113019 (2009).CrossRefGoogle Scholar
39.Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 79837991 (1986).Google Scholar
40.Frenkel, D. and Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. (Academic Press, Amsterdam, Netherlands, 1996).Google Scholar
41.Budevski, E., Staikov, G., and Lorenz, W.J.: Electrochemical Phase Formation and Growth, An Introduction to the Initial Stages of Metal Deposition. (VCH, Weinheim, Germany, 1996).Google Scholar
42.Lipkowski, J. and Ross, P.N.: Imaging of Surface and Interfaces. (Wiley-VCH, New York, NY, 1999).Google Scholar
43.Staikov, G.. Electrocrystallization in Nanotechnology. (Wiley-VCH, Weinheim, Germany 2007).CrossRefGoogle Scholar
44.Ferrando, R., Jellinek, J. and Johnston, R.L.: Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845910 (2008).Google Scholar
45.Oviedo, O.A., Mariscal, M.M., Leiva, E.P.M., Theoretical studies of preparation of core–shell nanoparticles by electrochemical metal deposition. Electrochim. Acta 55, 82448251 (2010).CrossRefGoogle Scholar
46.Chen, C-H, Vesecky, S.M., and Gewirth, A.A.: In situ atomic force microscopy of underpotential deposition of silver on gold (111). J. Am. Chem. Soc. 114, 451458 (1992).CrossRefGoogle Scholar
47.Fiolhais, C. and Perdew, J.P.: Energies of curved metallic surfaces from the stabilized-jellium model. Phys. Rev. B 45, 62076215 (1992).CrossRefGoogle ScholarPubMed