Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T20:50:34.317Z Has data issue: false hasContentIssue false

One-step in situ synthesis and characterization of W18O49@carbon coaxial nanocables

Published online by Cambridge University Press:  31 January 2011

Ruying Li
Affiliation:
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
Mei Cai
Affiliation:
General Motors Research and Development Center, Warren, Michigan 48090-9055
Xueliang Sun*
Affiliation:
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
*
a) Address all correspondence to this author. e-mail: xsun@eng.uwo.ca
Get access

Abstract

We demonstrate here in situ synthesis of bulk yield W18O49@carbon coaxial nanocables based on an easily controlled chemical vapor deposition process at relatively low temperature (760 °C) using metallic tungsten powder and ethylene (C2H4) as the raw materials. Transmission electron microscope (TEM), energy dispersive x-ray (EDX), and x-ray diffraction (XRD) analyses indicate that the resultant nanostructures are composed of single-crystalline W18O49 nanowires, coaxially covered with amorphous carbon walls. A vapor–solid (VS) mechanism is proposed to interpret the formation of the nanocables. The effect of carbon sources on the nanocable growth was investigated. The results revealed that the introduction of carbon species not only causes the production of W18O49@C nanocable structures, but also obviously modulates growth behaviors and core/shell diameter ratio of the nanocables. The obtained nanocables may find great applications in catalyst systems and optical and electronic nanodevices because of their enhanced surface properties, as well as in high chemical stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Li, Y., Qian, F., Xiang, J., and Lieber, C.M.: Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006).CrossRefGoogle Scholar
2.Dai, Z.R., Pan, Z.W., and Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 (2003).CrossRefGoogle Scholar
3.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
4.Law, M., Goldberger, J., and Yang, P.D.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
5.Yi, G.C., Wang, C.R., and Park, W.I.: ZnO nanorods: Synthesis, characterization and applications. Semi. Sci. Tech. 20, S22 (2005).CrossRefGoogle Scholar
6.Mieszawska, A.J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P.: The synthesis and fabrication of one-dimensional nano-scale heterojunctions. Small 3, 722 (2007).CrossRefGoogle Scholar
7.Liang, G.C., Xiang, J., Kharche, N., Klimeck, G., Lieber, C.M., and Lundstrom, M.: Performance analysis of a Ge/Si core/shell nano-wire field-effect transistor. Nano Lett. 7, 643 (2007).CrossRefGoogle Scholar
8.Kuan, C.Y., Chou, J.M., Leu, I.C., and Hon, M.H.: Self-organized Zn/ZnO core-shelled hierarchical structures prepared by aqueous chemical growth. J. Mater. Res. 23, 1163 (2008).CrossRefGoogle Scholar
9.An, S.J. and Yi, G.C.: Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanorod heterostructures on a p-GaN layer. Appl. Phys. Lett. 91, 123109 (2007).CrossRefGoogle Scholar
10.Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., and Yang, P.D.: ZnO–Al2O3 and ZnO-TiO2 core-shell nano-wire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).CrossRefGoogle Scholar
11.Du, N., Zhang, H., Chen, B.D., Wu, J.B., and Yang, D.R.: Low-temperature chemical solution route for ZnO based sulfide coaxial nanocables: General synthesis and gas sensor application. Nanotechnology 18, 115619 (2007).CrossRefGoogle Scholar
12.Kazakova, O., Daly, B., and Holmes, J.D.: Tunable magnetic properties of metal/metal oxide nanoscale coaxial cables. Phys. Rev. B 74, 184413 (2006).CrossRefGoogle Scholar
13.Li, L., Yang, Y.W., Li, G.H., and Zhang, L.D.: Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. Small 2, 548 (2006).CrossRefGoogle Scholar
14.Wang, Z.Y., Lu, Q.F., Kong, M.G., and Zhang, L.D.: Manipulation of the morphology of semiconductor-based nanostructures from core-shell nanoparticles to nanocables: The case of CdSe/SiO2. Chem. Eur. J. 13, 1463 (2007).CrossRefGoogle Scholar
15.Bae, J.Y., Yoo, J.Y., and Yi, G.C.: Fabrication and photolumines-cent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single quantum well structures. Appl. Phys. Lett. 89, 173114 (2006).CrossRefGoogle Scholar
16.Wang, C.R., Wang, J., Li, Q., and Yi, G.C.: Fabrication and photo-luminescent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single-quantum-well structures. Adv. Funct. Mater. 15, 1471 (2005).CrossRefGoogle Scholar
17.Sun, X.H., Sham, T.K., Rosenberg, R.A., and Shenoy, G.K.: One-dimensional silicon-cadmium selenide heterostructures. J. Phys. Chem. C 111, 8475 (2007).CrossRefGoogle Scholar
18.Li, R.Y., Sun, X.C., Zhou, X.R., Cai, M., and Sun, X.L.: Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J. Phys. Chem. C 111, 9130 (2007).CrossRefGoogle Scholar
19.Liang, C.H., Meng, G.W., Zhang, L.D., Shen, N.F., and Zhang, X.Y.: Carbon nanotubes filled partially or completely with nickel. J. Cryst. Growth 218, 136 (2000).CrossRefGoogle Scholar
20.Deng, B., Xu, A.W., Chen, G.Y., Song, R.Q., and Chen, L.P.: Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J. Phys. Chem. B 110, 11711 (2006).CrossRefGoogle ScholarPubMed
21.Luo, T., Chen, L.Y., Bao, K.Y., Yu, W.C., and Qian, Y.T.: Solvother-mal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene. Carbon 44, 2844 (2006).CrossRefGoogle Scholar
22.Qian, H.S., Yu, S.H., Luo, L.B., Gong, J.Y., Fei, L.F., and Liu, X.M.: Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 18, 2102 (2006).CrossRefGoogle Scholar
23.Wang, L.S., Buchholz, D.B., Li, Y., Li, J., Lee, C.Y., Chiu, H.T., and Chang, R.P.H.: EELS plasmon studies of silver/carbon core/shell nanocables prepared by simple arc discharge. Appl. Phys. A 87, 1 (2007).CrossRefGoogle Scholar
24.Huo, K.F., Zhang, X.M., Hu, L.S., Sun, X.J., Fu, J.J., and Chu, P.K.: One-step growth and field-emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates. Appl. Phys. Lett. 93, 013105 (2008).CrossRefGoogle Scholar
25.Kim, H.Y., Bae, S.Y., Kim, N.S., and Park, J.: Fabrication of SiC-C coaxial nanocables: Thickness control of C outer layers. Chem. Commun. 2634 (2003).CrossRefGoogle ScholarPubMed
26.Zhi, C.Y., Zhong, D.Y., and Wang, E.G.: GaN-filled carbon nanotubes: Synthesis and photoluminescence. Chem. Phys. Lett. 381, 715 (2003).CrossRefGoogle Scholar
27.Zhan, J.H., Bando, Y., Hu, J.Q., Li, Y.B., and Golberg, D.: Synthesis and field-emission properties of Ga2O3–C nanocables. Chem. Mater. 16, 5158 (2004).CrossRefGoogle Scholar
28.Yin, L.W., Bando, Y., Zhu, Y.C., and Li, M.S.: Controlled carbon nanotube sheathing on ultrafine InP nanowires. Appl. Phys. Lett. 84, 5314 (2004).CrossRefGoogle Scholar
29.Bae, S.Y., Seo, H.W., Choi, H.C., Han, D.S., and Park, J.: Singleand double-shelled coaxial nanocables of GaP with silicon oxide and carbon. J. Phys. Chem. B 109, 8496 (2005).CrossRefGoogle Scholar
30.Shen, X.P., Jiang, Z.Y., Gao, C.L., Xu, Z., Xie, Z.X., and Zheng, L.S.: Controlled carbon nanotube sheathing on ultrafine InP nanowires. J. Mater. Chem. 17, 1326 (2007).CrossRefGoogle Scholar
31.Sutter, E., Sutter, P., Calarco, R., Stoica, T., and Meijers, R.: Assembly of ordered carbon shells on GaN nanowires. Appl. Phys. Lett. 90, 093118 (2007).CrossRefGoogle Scholar
32.Saha, M.S., Li, R.Y., Cai, M., and Sun, X.L.: Nanowire-based 3-D hierarchical core/shell heterostructured electrodes for high performance PEM fuel cells. J. Power Sources 185, 1079 (2008).CrossRefGoogle Scholar
33.Viswanathan, K. and Brandt, K.: Crystal-structure and charge carrier concentration of W18O49. J. Solid State Chem. 36, 45 (1981).CrossRefGoogle Scholar
34.Kim, Y.S., Ha, S.C., Kim, K., Yang, H., Choi, S.Y., Kim, Y.T., Park, J.T., Lee, C.H., Choi, J., Paek, J., and Lee, K.: Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett. 86, 213105 (2005).CrossRefGoogle Scholar
35.Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M., and Niederberger, M.: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed. 45, 261 (2006).CrossRefGoogle Scholar
36.Li, Y.B., Bando, Y., and Golberg, D.: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 (2003).CrossRefGoogle Scholar
37.Jeon, S. and Yong, K.: Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing. J. Mater. Res. 23, 1320 (2008).CrossRefGoogle Scholar
38.Hong, K.Q., Xie, M.H., Hu, R., and Wu, H.S.: Synthesis of tungsten oxide comblike nanostructures. J. Mater. Res. 23, 2657 (2008).CrossRefGoogle Scholar
39.Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M.: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 (2005).CrossRefGoogle ScholarPubMed
40.Shen, G.Z., Bando, Y., Golberg, D., and Zhou, C.W.: Electron-beam-induced synthesis and characterization of W18O49 nanowires. J. Phys. Chem. C 112, 5856 (2008).CrossRefGoogle Scholar
41.Kawashima, A., Nomura, S., Toyota, H., Takemori, T., Mukasa, S., and Maehara, T.: A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires. Nanotechnology 18, 495603 (2007).CrossRefGoogle ScholarPubMed
42.Hwu, H.H. and Chen, J.G.: Substrate-dependent reaction pathways of ethylene on clean and carbide-modified W(110) and W(111). J. Phys. Chem. B 107, 11467 (2003).CrossRefGoogle Scholar
43.Gu, G., Zheng, B., Han, W.Q., Roth, S., and Liu, J.: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 (2002).CrossRefGoogle Scholar
44.Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
45.Kwon, S.J.: Theoretical analysis of non-catalytic growth of nanorods on a substrate. J. Phys. Chem. B 110, 3876 (2006).CrossRefGoogle ScholarPubMed
46.Sarin, V.K.: Morphological changes occurring during reduction of WO3. J. Mater. Sci. 10, 593 (1975).CrossRefGoogle Scholar
47.Hong, K.Q., Yiu, W.C., Wu, H.S., Gao, J., and Xie, M.H.: A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16, 1608 (2005).CrossRefGoogle Scholar
48.Jin, Y.Z., Zhu, Y.Q., Whitby, R.L.D., Yao, N., Ma, R.Z., Watts, P.C.P., Kroto, H.W., and Walton, D.R.M.: Simple approaches to quality large-scale tungsten oxide nanoneedles. J. Phys. Chem. B 108, 15572 (2004).CrossRefGoogle Scholar
49.Pfeifer, J., Badaljan, E., Tekula-Buxbaum, P., Kovacs, T., Geszti, O., Toth, A.L., and Lunk, H.J.: Growth and morphology of W18O49 crystals produced by microwave decomposition of ammonium paratungstate. J. Cryst. Growth 169, 727 (1996).CrossRefGoogle Scholar
50.Rothschild, A., Sloan, J., and Tenne, R.: Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).CrossRefGoogle Scholar
51.Thermo Build, N.A.S.A.: http://cea.grc.nasa.gov.Google Scholar
52.Ye, C.H., Fang, X.S., Hao, Y.F., Teng, X.M., and Zhang, L.D.: Zinc oxide nanostructures: Morphology derivation and evolution. J. Phys. Chem. B 109, 19758 (2005).CrossRefGoogle ScholarPubMed
53.Bechelany, M., Brioude, A., Stadelmann, P., Ferro, G., Cornu, D., and Miele, P.: Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 17, 3251 (2007).CrossRefGoogle Scholar
54.Zhao, T.K., Liu, Y.N., and Zhu, J.W.: Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 43, 2907 (2005).CrossRefGoogle Scholar
55.Zhao, N.Q., He, C.N., Du, X.W., Shi, C.S., Li, J.J., and Cui, L.: Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 44, 1859 (2006).CrossRefGoogle Scholar