Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T06:50:57.075Z Has data issue: false hasContentIssue false

Optical absorption of Co2+ in MgIn2S4, CdIn2S4, and HgIn2S4 spinel crystals

Published online by Cambridge University Press:  31 January 2011

Seok-Joo Lee
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Guseong-dong 373–1, Yuseong-gu, Daejeon 305–701, Korea
Jae-Eun Kim
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Guseong-dong 373–1, Yuseong-gu, Daejeon 305–701, Korea
Hae Yong Park
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Guseong-dong 373–1, Yuseong-gu, Daejeon 305–701, Korea
Get access

Abstract

The optical absorption spectra of cobalt-doped MgIn2S4, CdIn2S4, and HgIn2S4 single crystals grown by a chemical transport reaction were investigated at 7 K. The values of Dq and B calculated from the observed spectra show that the d electrons are more delocalized in the order of MgIn2S4, CdIn2S4, and HgIn2S4. Because this order corresponds to the decreasing order of the electronegativity differences between the metal and sulfur atoms of the host crystals, we conclude that as the metal-sulfur bonds in the host crystals are more covalent, the d electrons of the cobalt impurities are more spread out and the cobalt-sulfur bonds are also more covalent.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hahn, H. and Klingler, W., Z. Anorg. Allg. Chem. 263, 177 (1950).Google Scholar
2.Gastaldi, L. and Lapiccirella, A., J. Solid State Chem. 30, 223 (1979).Google Scholar
3.Kerr, R.K. and Schwerdtfeger, C.F., J. Phys. Chem. Solids 33, 1975 (1972).CrossRefGoogle Scholar
4.Ueno, M., Nakanishi, H., and Irie, T., J. Phys. Soc. Jpn. 44, 2013 (1978).CrossRefGoogle Scholar
5.Fiorani, D. and Viticoli, S., Solid State Commun. 32, 889 (1979).Google Scholar
6.Beun, J.A., Nitsche, R., and Lichtensterger, M., Physica 26, 647 (1960).Google Scholar
7.Fortin, E., Fafard, S., Anedda, A., Ledda, F., and Charlebois, A., Solid State Commun. 77, 165 (1991).CrossRefGoogle Scholar
8.Park, Y., Kim, H., Hwang, I., Kim, J-E., Park, H.Y., Jin, M-S., Oh, S-K., Kim, W-T., Phys. Rev. B 53, 15604 (1996).Google Scholar
9.Min, B-K., Kim, H., Kim, J-E., Park, H.Y., Song, H-J., and Kim, W-T., Solid State Commun. 115, 651 (2000).CrossRefGoogle Scholar
10.Villars, P. and Calvert, L.D., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1991).Google Scholar
11.Pappalardo, R. and Dietz, R.E., Phys. Rev. B 123, 1188 (1961).CrossRefGoogle Scholar
12.Garaber, N., Wagner, H.J., and Schwerdtfeger, C.F., J. Phys. Soc. Jpn. 46, 1953 (1979).CrossRefGoogle Scholar
13.Gardavsky, J., Werner, A., and Hochheimer, H.D., Phys. Rev. B 24, 4972 (1981).CrossRefGoogle Scholar
14.Lee, Y-L., Kim, C-D., and Kim, W-T., J. Appl. Phys. 76, 7499 (1994).Google Scholar
15.Schläfer, H.L. and Gliemann, G., Basic Principles of Ligand Field Theory (Wiley, New York, 1969), pp. 61, 83.Google Scholar
16.Weakliem, H.A., J. Chem. Phys. 36, 2117 (1961).Google Scholar
17.Gubanov, V.A., Kulikova, O.V., Kulyuk, L.L., Radautsan, S.I., Ratseev, S.A., Salivon, G.I., Tezlevan, V.E., and Tsytsanu, V.I., Sov. Phys. Solid State 30, 258 (1988).Google Scholar