Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:05:34.909Z Has data issue: false hasContentIssue false

Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal

Published online by Cambridge University Press:  05 July 2012

Yan Zhang*
Affiliation:
Department of Material Engineering, Shanghai Institute of Technology, Shanghai 200235, China: and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
Guofu Wang
Affiliation:
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
*
a)Address all correspondence to this author. e-mail: yanzhang@sit.edu.cn
Get access

Abstract

Yb3+:Sr3Y2(BO3)4 crystals have been grown successfully by Czochralski method. The compound crystallizes in orthorhombic system, space group Pnma, with a = 7.4062(3) Å, b = 16.0030(7) Å, c = 8.7130(4) Å, α = β = γ = 90°, and Z = 4. Yb3+:Sr3Y2(BO3)4 has three cationic sites and two kinds of boron sites. The crystalline quality of the Yb3+:Sr3Y2(BO3)4 single crystal was verified by the width of the x-ray diffraction peak in the x-ray rocking curves measurement. The absorption spectrum, emission spectrum, and fluorescence lifetime of the Yb3+:Sr3Y2(BO3)4 crystal were detected at room temperature. The laser performance parameters βmin, Ipsat, and Imin were calculated.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kolbas, R.M., Anderson, N.G., Laidig, W.D., Sin, Y., Lo, Y.C., Hsieh, K.Y., and Yang, Y.J.: Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers. IEEE J. Quantum Electron. 24, 1605 (1988).CrossRefGoogle Scholar
2.De Loach, L.D., Payne, S.A., Chase, L.L., Smith, L.K., and Kway, W.L.: Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications. IEEE J. Quantum Electron. 29, 1179 (1993).CrossRefGoogle Scholar
3.Taira, T., Tulloch, W.M., Byer, R.L., and Kobayashi, T.: Single axial-mode oscillation of a coupled cavity Yb:YAG laser. OSA TOPS Adv. Solid-State Lasers 1, 14 (1996).Google Scholar
4.Mill, B.V., Tkachuk, A.M., Ershova, G.I., Mironov, D.I., and Nikitichev, A.A.: Growth and spectroscopic properties of Ln2Ca3B4O12-Nd3+ (Ln = Y, La, Gd) crystals. Opt. Spectrosc. 81, 201 (1996).Google Scholar
5.Mill, B.V., Tkachuk, A.M., and Belokoneva, E.L.: Growth, structure and intensities of spectra of Ln2Ca3B4O12-Nd3+ crystals (Ln=Y, La, Gd). Opt. Spectrosc. 84, 65 (1998).Google Scholar
6.Haumesser, P.H., Gaumé, R., Benitez, J.M., Viana, B., Ferrand, B., Aka, G., and Vivien, D.: Czochralski growth of six Yb-doped double borate and silicate laser materials. J. Cryst. Growth 233, 233 (2001).CrossRefGoogle Scholar
7.Mill, B.V., Tkachuk, A.M., Belokoneva, E.L., Ershova, G.I., and Mironov, D.I.: Spectroscopic studies of Ln2Ca3B4O12-Nd3+ (Ln = Y, La, Gd) crystals. J. Alloys Compd. 277, 291 (1998).Google Scholar
8.Wang, Y., Tu, C.Y., Huang, C.C., and You, Z.Y.: Sturdy of crystal Yb3+:Ca3Y2(BO3)4. J. Mater. Res. 19, 1023 (2004).CrossRefGoogle Scholar
9.Wei, B., Lin, Z.B., and Wang, G.F.: Growth and spectral properties of Er3+/Yb3+ co-doped Ca3Ln2(BO3)4 (Ln=Gd, La) crystals. J. Cryst. Growth 295, 241 (2006).CrossRefGoogle Scholar
10.Jiang, H.D., Wang, J.Y., Zhang, H.J., Hu, X.B., Teng, B., Zhang, C.Q., and Wang, P.: Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal. Chem. Phys. Lett. 357, 15 (2002).CrossRefGoogle Scholar
11.Haumesser, P.H., Gaumé, R., Viana, B., and Vivien, D.: Determination of laser parameters of Ytterbium-doped oxide crystalline materials. J. Opt. Soc. Am. B: Opt. Phys. 19, 2365 (2002).CrossRefGoogle Scholar
12.Jiang, H.D., Wang, J.Y., Zhang, H.J., Hu, X.B., Phil, B., and James, A.P.: Spectral and luminescent properties of Yb3+ ions in YCa4O(BO3)3 crystal. Chem. Phys. Lett. 361, 499 (2002).CrossRefGoogle Scholar
13.Mougel, F., Dardenne, K., Aka, G., Kahn-Harari, A., and Vivien, D.: Ytterbium-doped Ca4GdO(BO3)3: An efficient infrared laser and self-frequency doubling crystal. J. Opt. Soc. Am. B: Opt. Phys. 16, 164 (1999).CrossRefGoogle Scholar
14.Kisel, V.E., Troshin, A.E., Shcherbitsky, V.G., Kuleshov, N.V., Matrosov, V.N., Matrosova, T.A., Kupchenko, M.I., Brunner, F., Pashotta, R., Morrier-Genoud, F., and Keller, U.: Femtosecond pulse generation with a diode pumped Yb3+:YVO4 laser. Opt. Lett. 30, 1150 (2005).CrossRefGoogle ScholarPubMed
15.Druon, F., Ricaud, S., Papadopoulos, D.N., Pellegrina, A., Camy, P., Doualan, J-L., Moncorgé, R., Courjaud, A., Mottay, E., and Georges, P.: On Yb: CaF2 and Yb: SrF2: Review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Opt. Mater. Express 1, 489 (2011).CrossRefGoogle Scholar
16.Rivier, S., Schmidt, A., Kränkel, C., Peters, R., Petermann, K., Huber, G., Zorn, M., Weyers, M., Klehr, A., Erbert, G., Petrov, V., and Griebner, U.: Ultrashort pulse Yb: LaSc3(BO3)4 mode-locked oscillator. Opt. Express 15, 15539 (2007).CrossRefGoogle Scholar
17.Yoshida, A., Schmidt, A., Zhang, H., Wang, J., Liu, J., Fiebig, C., Paschke, K., Erbert, G., Petrov, V., and Griebner, U.: 42-fs diode-pumped Yb: Ca4YO(BO3)4 oscillator. Opt. Express 18, 24325 (2010).CrossRefGoogle Scholar
18.Tokurakawa, M., Shirakawa, A., Ueda, K-I., Yagi, H., Noriyuki, M., Yanagitani, T., and Kaminskii, A.A.: Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser. Opt. Express 17, 3353 (2009).CrossRefGoogle Scholar
19.Papadopoulos, D.N., Druon, F., Boudeile, J., Martial, I., Hanna, M., Georges, P., Petit, P.O., Goldner, P., and Viana, B.: Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser. Opt. Lett. 34, 196 (2009).Google Scholar
20.Berger, J.A., Greco, M.J., and Schroeder, W.A.: High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator. Opt. Express 16, 8629 (2008).CrossRefGoogle ScholarPubMed
21.Romero, J.J., Johannsen, J., Mond, M., Petermann, K., Huber, G., and Heumann, E.: Continuous-wave laser action of Yb3+-doped lanthanum scandium borate. Appl. Phys. B 80, 159 (2005).Google Scholar
22.Wang, P., Dawes, J.M., Dekker, P., Chase, L.L., Knowles, D.S., Piper, J., and Lu, B.: Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal. J. Opt. Soc. Am. B: Opt. Phys. 16, 63 (1999).Google Scholar
23.Pan, S., Hu, Z., Lin, Z.B., and Wang, G.F.: Growth and optical properties of Yb3+-doped α- Ba3Y(BO3)3 crystal. J. Cryst. Growth 263, 214 (2004).Google Scholar