Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-30T19:08:44.715Z Has data issue: false hasContentIssue false

Optimal thickness for Si interlayer as diffusion barrier at the Si3N4/GaAs interface: A transmission electron microscopy study

Published online by Cambridge University Press:  03 March 2011

T. Zheng
Affiliation:
Department of Physics, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080
J.M. Gibson
Affiliation:
Department of Physics, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080
D.S.L. Mui
Affiliation:
Science Engineering Laboratory, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080
H. Morkoç
Affiliation:
Science Engineering Laboratory, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080
Get access

Abstract

Using transmission electron microscopy, we investigate Si3N4 grown in situ on GaAs metal-insulator-semiconductor (MIS) device structures with a Si interlayer, which has been previously shown to improve the electrical properties of field-effect transistors with Si3N4 gates on GaAs. We find that the primary role of the Si interlayer is to prevent the reaction between the nitride or nitrogen used for growth and GaAs. The interlayer thickness dependence of this microstructure, and its relationship to electrical properties, are discussed. The optimal thickness of the thin pseudomorphic Si interlayer appears to be around 0.4 nm. The growth temperature dependence of the critical thickness for morphological instability is demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Theeten, J. B., Gourrier, S., Friedel, P., Taillepied, M., Arnoult, D., and Benarroche, D., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R.P.H. and Abeles, B. (Mater. Res. Soc. Symp. Proc. 38, Pittsburgh, PA, 1985), p. 499.Google Scholar
2Wilmsen, C., J. Vac. Sci. Technol. 19, 279 (1982).CrossRefGoogle Scholar
3Offsey, S. D., Woodall, J. M., Warren, A. C., Kirchner, P. D., Chappell, T. I., and Pettit, G. D., Appl. Phys. Lett. 48, 475 (1986).CrossRefGoogle Scholar
4Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).CrossRefGoogle Scholar
5Paccagnella, P., Callegari, A., Batey, J., and Lacey, D., Appl. Phys. Lett. 57, 258 (1990).CrossRefGoogle Scholar
6Fujieda, S., Mochizuki, Y., Akimoto, K., Hirosawa, I., Matsumoto, Y., and Matsuri, J., Jpn. J. Appl. Phys. 29, L364 (1990).CrossRefGoogle Scholar
7Chaudhari, G. N. and Rao, V. J., Appl. Phys. Lett. 68, 852 (1993).CrossRefGoogle Scholar
8Mui, D. S. L., Liaw, H., Demirel, A. L., Strite, S., and Morkoç, H., Appl. Phys. Lett. 59, 2847 (1991).CrossRefGoogle Scholar
9Hasegawa, H. and Ohno, H., J. Vac. Sci. Technol. B 4, 1130 (1986).CrossRefGoogle Scholar
10Hasegawa, H., He, L., Ohno, H., Sawada, T., Haga, T., Abe, Y., and Takahashi, H., J. Vac. Sci. Technol. B 5, 1097 (1987).CrossRefGoogle Scholar
11Hasegawa, H., Akazawa, M., Ishii, H., and Matsuzaki, K., J. Vac. Sci. Technol. B 7, 870 (1989).CrossRefGoogle Scholar
12Hashizume, T., Hasegawa, H., Tochitani, G., and Shimozuma, M., Jpn. J. Appl. Phys. 31, 3794 (1992).CrossRefGoogle Scholar
13Callegari, A., Hoh, P. D., Buchanan, D. A., and Lacey, D., Appl. Phys. Lett. 54, 332 (1989).CrossRefGoogle Scholar
14Gibson, J. M., Lanzerotti, M. Y., and Elser, V., Appl. Phys. Lett. 55, 1394 (1989).CrossRefGoogle Scholar
15Mui, D. S. L., Fang, S. F., and Morkoç, H., Appl. Phys. Lett. 59, 1887 (1991).CrossRefGoogle Scholar
16Roberston, J., Philos. Mag. B 63, 47 (1991).Google Scholar
17Low Pressure Chemical Vapor Deposition Silicon Oxynitrid Films, Material and Application, edited by Habraken, F. H. P. M. (Springer, Heidelberg, 1991).Google Scholar
18Hull, R., Gibson, J. M., and Bean, J. C., Appl. Phys. Lett. 46, 179 (1985).CrossRefGoogle Scholar
19Sands, T., Washburn, J., and Gronsky, R., Mater. Lett. 3, 247 (1985).CrossRefGoogle Scholar
20Spencer, B. J., Voorhees, P. W., and Davis, S. H., Phys. Rev. Lett. 67, 3696 (1991).CrossRefGoogle Scholar