Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T22:53:30.170Z Has data issue: false hasContentIssue false

Optimization of Y2BaCuO5 phase morphology for the growth of large bulk YBCO grains

Published online by Cambridge University Press:  03 March 2011

F. Frangi*
Affiliation:
Superconductivity Research Laboratory, ISTEC, 16-25, Shibaura l-chrome, Minato-ku, Tokyo, 105 Japan
T. Higuchi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 16-25, Shibaura l-chrome, Minato-ku, Tokyo, 105 Japan
M. Deguchi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 16-25, Shibaura l-chrome, Minato-ku, Tokyo, 105 Japan
M. Murakami
Affiliation:
Superconductivity Research Laboratory, ISTEC, 16-25, Shibaura l-chrome, Minato-ku, Tokyo, 105 Japan
*
a)On leave from CISE S.p.A., 12081 1-20134 Milano, Italy.
Get access

Abstract

YBCO samples were prepared using different types of precursor powders: quenched, or YBa2Cu3O7−x and Y2BaCuO5 commercial powders, with and without Pt addition. Two stoichiomctrics, corresponding to 0 and 40% molar excess of the Y2BaCuO5 phase, were adopted. The behavior of the Y2BaCuO5 phase through thermal treatments, typical of melt processes, was observed by quenching the samples at various stages. YBa2Cu3O7−x grain growth kinetics was enhanced and liquid phase losses were limited by optimizing the morphology of the Y2BaCuO5 phase in the partially melted state, with the simultaneous presence of round particles ≤1 μm and needle-like particles with very high aspect ratio. The optimized processing conditions were adopted, together with a seeding technique, to grow YBCO samples. At 77 K, a magnetic levitation force of 2.5 kg was measured for a sample with 18 mm diameter, and magnetization critical current densities over 104 A/cm2 were reached at 1 T.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T.H., Sherwood, R.C., van Dover, R.B., Davis, M.E., Karamlott, G.W., and Fastnacht, R.A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., and Tanaka, S., Adv. Supercond. 2, 285 (1990).Google Scholar
4Bateman, C. A., Zhang, L., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 75, (50), 1281 (1992).Google Scholar
5Cima, M.J., Flemings, M.C., Figueredo, A.M., Nakade, M., Ishii, H., Brody, H.D., and Haggerty, J.S., J. Appl. Phys. 72 (10), 179 (1992).CrossRefGoogle Scholar
6Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7 1621 (1992).Google Scholar
7Rodriguez, M.A., Chen, B-J., and Snyder, R.L., Physica C 195, 185 (1992).CrossRefGoogle Scholar
8Goyal, A., Alexander, K.B., and Kroeger, D.M., Physica C 210, 197 (1993).CrossRefGoogle Scholar
9Frangi, F., Varesi, E., Ripamonti, G., and Zannella, S., Supercond. Sci. Technol. 73, 108 (1994).Google Scholar
10Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N., and Tanaka, S., Supercond. Sci. Technol. 4, S49 (1991).CrossRefGoogle Scholar
11Lee, D.F., Selvamanickam, V., and Salama, K., Physica C 202, 83 (1992).CrossRefGoogle Scholar
12Wang, Z.L., Goyal, A., and Kroeger, D.M., Phys. Rev. B 47, 5373 (1993).Google Scholar
13Mironova, M., Lee, D.F., and Salama, K., Physica C 211, 188 (1993).Google Scholar
14Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).Google Scholar
15Izumi, T., Nakamura, Y., Sung, T.H., and Shiohara, Y., J. Mater. Res. 7, 801 (1992).Google Scholar
16Varanasi, C., and McGinn, P.J., Physica C 207, 79 (1993).Google Scholar
17Morita, M., Tanaka, M., Kimura, K., Sasaki, T., Trouilleux, L., Takabayashi, S., Miyamoto, K., Hashimoto, M., and Sawano, K., Advances in Superconductivity IV (Springer-Verlag, Tokyo 1991), p. 433.Google Scholar
18Frangi, F., Higuchi, T., Deguchi, M., and Murakami, M., Supercond. Sci. Technol. (in press).Google Scholar
19Chen, D.X. and Goldfarb, R.B., J. Appl. Phys. 66, 2489 (1989).Google Scholar
20Rignalda, J., Yao, X., McCartney, D.G., Kiely, C.J., and Tatlock, G.J., Mater. Lett. 13, 357 (1992).CrossRefGoogle Scholar
21Sakai, N., Yoo, S-Y., and Murakami, M.*****, unpublished research.Google Scholar
22Griffith, M.L., Huffman, R.T., and Halloran, J.W., J. Mater. Res. 9, 1633 (1994).Google Scholar
23Yang, Y., Yi, Z., Beduz, C., and Scurlock, R.G., Proceed. EUCAS, Göttingen, Germany, October 1993, p. 349.Google Scholar
24Kim, C-J., Kim, K-B., and Hong, G-W., Mater. Lett, (in press).Google Scholar