Published online by Cambridge University Press: 31 January 2011
The structure of a region of a highly Al-rich mullite (Al4+2xSi2–2xO10–x with x ∼ 0.82; 47Al2O3-6SiO2; Al/Si ∼16) in a chemically vapor-deposited, functionally graded mullite coating was studied by high-resolution transmission electron microscopy. The region consisted of a fully ordered and twinned multidomain structure. Within each domain, well-ordered oxygen vacancies resulted in antiphase boundaries (APBs) characterized by a shift vector of [001]. The APBs were oriented parallel to (601) and (601). Along [001], the structure consisted of alternating layers of (601)- and (601)-domains with a spacing of 17d601, separated by (001) twinning planes. The (001) twinning did not generate any additional spots in the [010] mullite diffraction pattern. The lattice parameters of this ultrahigh Al-rich mullite phase were calculated from selected-area electron-diffraction patterns to be: a = 0.762 nm; b = 0.754 nm; and c = 0.291 nm.