Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T15:03:49.277Z Has data issue: false hasContentIssue false

Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip

Published online by Cambridge University Press:  16 December 2011

Claudio Zambaldi*
Affiliation:
Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany
Yiyi Yang
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1226
Thomas R. Bieler
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1226
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany
*
a)Address all correspondence to this author. e-mail: c.zambaldi@mpie.de
Get access

Abstract

This study reports on the anisotropic indentation response of α-titanium. Coarse-grained titanium was characterized by electron backscatter diffraction. Sphero-conical nanoindentation was performed for a number of different crystallographic orientations. The grain size was much larger than the size of the indents to ensure quasi-single-crystal indentation. The hexagonal c-axis was determined to be the hardest direction. Surface topographies of several indents were measured by atomic force microscopy. Analysis of the indent surfaces, following Zambaldi and Raabe (Acta Mater. 58(9), 3516–3530), revealed the orientation-dependent pileup behavior of α-titanium during axisymmetric indentation. Corresponding crystal plasticity finite element (CPFE) simulations predicted the pileup patterns with good accuracy. The constitutive parameters of the CPFE model were identified by a nonlinear optimization procedure, and reproducibly converged toward easy activation of prismatic glide systems. The calculated critical resolved shear stresses were 150 ± 4, 349 ± 10, and 1107 ± 39 MPa for prismatic and basal 〈a〉-glide and pyramidal〈c + a〉-glide, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zambaldi, C. and Raabe, D.: Plastic anisotropy of gamma-TiAl revealed by axisymmetric indentation. Acta Mater. 58, 3516 (2010).CrossRefGoogle Scholar
2.Lütjering, G. and Williams, J.C.: Titanium (Engineering Materials and Processes) (Springer, Berlin, Germany, 2007).Google Scholar
3.Bieler, T.R., Trevino, R.M., and Zeng, L.: Alloys: Titanium, in Encyclopedia of Condensed Matter Physics (Elsevier, Oxford, 2005), pp. 6576.CrossRefGoogle Scholar
4.Dunne, F.P.E., Walker, A., and Rugg, D.: A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc. R. Soc. London, Sect. A 463, 1467 (2007).Google Scholar
5.Wu, X., Kalidindi, S., Necker, C., and Salem, A.: Modeling anisotropic stress-strain response and crystallographic texture evolution in alpha-titanium during large plastic deformation using Taylor-type models: Influence of initial texture and purity. Metall. Mater. Trans. A 39, 3046 (2008).CrossRefGoogle Scholar
6.Wang, L., Barabash, R., Yang, Y., Bieler, T., Crimp, M., Eisenlohr, P., Liu, W., and Ice, G.: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline alpha-Ti. Metall. Mater. Trans. A 42, 626 (2011).CrossRefGoogle Scholar
7.Hutchinson, W. and Barnett, M.: Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 63, 737 (2010).CrossRefGoogle Scholar
8.Ungár, T., Ribárik, G., Balogh, L., Salem, A.A., Semiatin, S.L., and Vaughan, G.B.: Burgers vector population, dislocation types and dislocation densities in single grains extracted from a polycrystalline commercial-purity Ti specimen by X-ray line-profile analysis. Scr. Mater. 63, 69 (2010).CrossRefGoogle Scholar
9.Bettles, C.J., Lynch, P.A., Stevenson, A.W., Tomus, D., Gibson, M.A., Wallwork, K., and Kimpton, J.: In situ observation of strain evolution in CP-Ti over multiple length scales. Metall. Mater. Trans. A 42, 100 (2010).CrossRefGoogle Scholar
10.Bieler, T.R., Nicolaou, P.D., and Semiatin, S.L.: An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V. Metall. Mater. Trans. A 36, 129 (2005).CrossRefGoogle Scholar
11.Britton, T.B., Birosca, S., Preuss, M., and Wilkinson, A.J.: Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy. Scr. Mater. 62, 639 (2010).CrossRefGoogle Scholar
12.Yang, Y., Wang, L., Bieler, T., Eisenlohr, P., and Crimp, M.A.: Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium. Metall. Mater. Trans. A 42, 636 (2011).CrossRefGoogle Scholar
13.Bieler, T., Eisenlohr, P., Roters, F., Kumar, D., Mason, D., Crimp, M., and Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).CrossRefGoogle Scholar
14.Zaefferer, S.: A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture. Mater. Sci. Eng., A 344, 20 (2003).CrossRefGoogle Scholar
15.Franciosi, P. and Zaoui, A.: Multislip in f.c.c. crystals a theoretical approach compared with experimental data. Acta Metall. 30, 1627 (1982).CrossRefGoogle Scholar
16.Franciosi, P.: The concepts of latent hardening and strain-hardening in metallic single-crystals. Acta Metall. 33, 1601 (1985).CrossRefGoogle Scholar
17.Churchman, A.T.: The slip modes of titanium and the effect of purity on their occurrence during tensile deformation of single crystals. Proc. R. Soc. London, Ser. A 226, 216, http://www.jstor.org/stable/99430 (1954).Google Scholar
18.Paton, N.E. and Backofen, W.A.: Plastic deformation of titanium at elevated temperatures. Metall. Trans. B 1, 2839 (1970).CrossRefGoogle Scholar
19.Sakai, T. and Fine, M.E.: Plastic-deformation of Ti-Al single-crystals in prismatic slip. Acta Metall. 22, 1359 (1974).CrossRefGoogle Scholar
20.Akhtar, A.: Basal slip and twinning in alpha-titanium single-crystals. Metall. Trans. A 6, 1105 (1975).CrossRefGoogle Scholar
21.Biget, M.P. and Saada, G.: Low-temperature plasticity of high-purity alpha-titanium single-crystals. Philos. Mag. A 59, 747 (1989).CrossRefGoogle Scholar
22.Williams, J.C., Baggerly, R.G., and Paton, N.E.: Deformation behavior of HCPTi-Al alloy single crystals. Metall. Mater. Trans. A 33, 837 (2002).CrossRefGoogle Scholar
23.Raabe, D., Ma, D., and Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55, 4567 (2007).CrossRefGoogle Scholar
24.Wang, L., Eisenlohr, P., Yang, Y., Bieler, T., and Crimp, M.: Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 63, 827 (2010).CrossRefGoogle Scholar
25.Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., and Tome, C.N.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 4073 (2010).CrossRefGoogle Scholar
26.Roters, F.: Application of crystal plasticity fem from single crystal to bulk polycrystal. Comput. Mater. Sci. 32, 509 (2005).CrossRefGoogle Scholar
27.Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D.: Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications. Acta Mater. 58, 1152 (2010).CrossRefGoogle Scholar
28.Kalidindi, S.R., Bronkhorst, C.A., and Anand, L.: Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids 40, 537 (1992).CrossRefGoogle Scholar
29.Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1 (1969).CrossRefGoogle Scholar
30.Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London, Ser. A 348, 101 (1976).Google Scholar
31.Peirce, D., Asaro, R.J., and Needleman, A.: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31, 1951 (1983).CrossRefGoogle Scholar
32.Asaro, R.J. and Needleman, A.: Overview 42. Texture development and strain-hardening in rate dependent polycrystals. Acta Metall. 33, 923 (1985).CrossRefGoogle Scholar
33.Peirce, D., Asaro, R.J., and Needleman, A.: An analysis of nonuniform and localized deformation in ductile single-crystals. Acta Metall. 30, 1087 (1982).CrossRefGoogle Scholar
34.M.S.C. Software: MARC2010, Volume D—User Subroutines and Special Routines. MSC.Software Corp. (2010).Google Scholar
35.Bhattacharya, A.K. and Nix, W.D.: Finite-element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).CrossRefGoogle Scholar
36.Liu, Y., Wang, B., Yoshino, M., Roy, S., Lu, H., and Komanduri, R.: Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53, 2718 (2005).CrossRefGoogle Scholar
37.Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA, 1971).Google Scholar
38.Nelder, J. and Mead, R.: A simplex method for function minimization. Comput. J. 7, 308 (1965).CrossRefGoogle Scholar
39.Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes C++ (Cambridge University Press, Cambridge, U.K., 2007).Google Scholar
40.Grujicic, M. and Batchu, S.: A crystal plasticity materials constitutive model for polysynthetically-twinned gamma-TiAl+alpha(2)-Ti3Al single crystals. J. Mater. Sci. 36, 2851 (2001).CrossRefGoogle Scholar
41.Gwyddion: Free AFM Data Analysis Software. http://gwyddion.net (20042009).Google Scholar
42.Viswanathan, G., Lee, E., Maher, D.M., Banerjee, S., and Fraser, H.L.: Direct observations and analyses of dislocation substructures in the alpha-phase of an alpha/beta Ti-alloy formed by nanoindentation. Acta Mater. 53, 5101 (2005).CrossRefGoogle Scholar
43.Merson, E., Brydson, R., and Brown, A.: The effect of crystallographic orientation on the mechanical properties of titanium. J. Phys Conf. Ser. 126, 1 (2008).CrossRefGoogle Scholar
44.Lee, Y., Hahn, J., Nahm, S., Jang, J., and Kwon, D.: Investigations on indentation size effects using a pile-up corrected hardness. J. Phys. D: Appl. Phys. 41, 074027 (2008).CrossRefGoogle Scholar
45.Tsuya, K.: Effect of temperature on hardness anisotropy of beryllium single crystals. J. Nucl. Mater. 22, 148 (1967).CrossRefGoogle Scholar
46.Zambaldi, C.: Micromechanical Modeling of γ-TiAl Based Alloys, Dissertation RWTH Aachen (Shaker Verlag, Aachen, Germany, 2010), http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3607/.Google Scholar
47.Gaillard, Y., Macías, A.H., Muñoz-Saldaña, J., Anglada, M., and Trápaga, G.: Nanoindentation of BaTiO3: Dislocation nucleation and mechanical twinning. J. Phys. D 42, 085502 (2009).CrossRefGoogle Scholar
48.Yu, Q., Shan, Z., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).CrossRefGoogle ScholarPubMed
49.Liu, Y., Ma, S.V.J., Lu, M.Y.H., and Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24, 1990 (2008).CrossRefGoogle Scholar
50.Bolzon, G., Maier, G., and Panico, M.: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957 (2004).CrossRefGoogle Scholar
51.Bocciarelli, M., Bolzon, G., and Maier, G.: Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37, 855 (2005).CrossRefGoogle Scholar
52.Yonezu, A., Kuwahara, Y., Yoneda, K., Hirakata, H., and Minoshima, K.: Estimation of the anisotropic plastic property using single spherical indentation—An FEM study. Comput. Mater. Sci. 47, 611 (2009).CrossRefGoogle Scholar
53.Gong, J. and Wilkinson, A.J.: Anisotropy in the plastic flow properties of single-crystal α-titanium determined from micro-cantilever beams. Acta Mater. 57, 5693 (2009).CrossRefGoogle Scholar
54.Demir, E., Raabe, D., Zaafarani, N., and Zaefferer, S.: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 57, 559 (2009).CrossRefGoogle Scholar
55.Pharr, G., Herbert, E., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).CrossRefGoogle Scholar