Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T03:28:42.336Z Has data issue: false hasContentIssue false

Orientation relationship and interfaces in nonfaceted-nonfaceted ZrO2(c)–CaZrO3 lamellar eutectics

Published online by Cambridge University Press:  31 January 2011

A. Larrea
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas–Universidad de Zaragoza, María de Luna 3, E-50015 Zaragoza, Spain
V. M. Orera
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas–Universidad de Zaragoza, María de Luna 3, E-50015 Zaragoza, Spain
J. I. Peña
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas–Universidad de Zaragoza, María de Luna 3, E-50015 Zaragoza, Spain
R. I. Merino
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas–Universidad de Zaragoza, María de Luna 3, E-50015 Zaragoza, Spain
Get access

Abstract

The orientation relationship and the interfaces of ZrO2(c)–CaZrO3 unidirectional solidified eutectics have been investigated by means of electron diffraction and transmission electron microscopy (TEM). In contrast to previous studies on lamellar oxide-oxide systems, neither a constant orientation relationship between contiguous lamellae nor low-index interfaces are observed in this eutectic. As for metals and plastic crystals, it displays incoherent interfaces and nonfaceted growth. This unusual behavior is discussed in terms of entropy of fusion and related to the presence of oxygen vacancies in the ZrO2(c) phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashbrook, R. L., J. Am. Ceram. Soc. 6, 428 (1977).CrossRefGoogle Scholar
2.Revcolevschi, A., Dhalenne, G., and Michel, D., Mater. Sci. Forum 29, 173 (1988).CrossRefGoogle Scholar
3.Peña, J. I., Merino, R. I., de la Fuente, G. F., and Orera, V.M., Adv. Mater. 8, 909 (1996).CrossRefGoogle Scholar
4.Merino, R. I., Peña, J. I., Orera, V. M., and de la Fuente, G. F., Solid State Ionics 100, 313 (1997).CrossRefGoogle Scholar
5.Merino, R.I., Pardo, J.A., Peña, J.I., de la Fuente, G. F., Larrea, A., and Orera, V.M., Phys. Rev. B 56, 10907 (1997).CrossRefGoogle Scholar
6.Orera, V.M., Peña, J.I., Merino, R. I., Lázaro, J. A., Vallés, J. A., and Rebolledo, M. A., Appl. Phys. Lett. 71, 2746 (1997).CrossRefGoogle Scholar
7.Koopmans, H.J. A., van de Velde, G.M. H., and Gellings, P. J., Acta Crystallogr. C 39, 1323 (1983).CrossRefGoogle Scholar
8.Minford, W.J., Bradt, R. C., and Stubican, V. S., J. Am. Ceram. Soc. 62, 154 (1979).CrossRefGoogle Scholar
9.Revcolevschi, A. and Dhalenne, G., Adv. Mater. 5, 657 (1993).CrossRefGoogle Scholar
10.de la Fuente, G.F., Díez, J. C., Angurel, L.A., Peña, J. I., Sotelo, A., and Navarro, R., Adv. Mater. 7, 853 (1995).CrossRefGoogle Scholar
11.Williams, D.B. and Carter, C. B., Transmission Electron Microscopy (Plenum Press, New York, 1996).CrossRefGoogle Scholar
12.Forwood, C.T. and Clarebrough, L. M., Electron Microscopy of Interfaces in Metals and Alloys (Adam Hilger, Bristol, 1991).Google Scholar
13.Randle, V., The Measurement of Grain Boundary Geometry (Adam Hilger, Bristol, 1991).Google Scholar
14.Karma, A., Phys. Rev. Lett. 59, 71 (1987).CrossRefGoogle Scholar
15.Faivre, G. and Mergy, J., Phys. Rev. A 45, 7320 (1992).CrossRefGoogle Scholar
16.Davies, I. G. and Hellawell, A., Philos. Mag. 22, 1255 (1970).CrossRefGoogle Scholar
17.Foëx, M., Traverse, J. P., and Coutures, J., C. R. Acad. Sci. Paris 264, 1837 (1967);Google Scholar
Mathews, M.D., Mirza, E.B., and Momin, A.C., J. Mater. Sci. Lett. 10, 305 (1991).CrossRefGoogle Scholar
18.Dravid, V.P., Sung, C. M., Notis, M.R., and Lyman, C.E., Acta Crystallogr. B 45, 218 (1989).CrossRefGoogle Scholar
19.van Tendeloo, G. and Amelinckx, S., Acta Crystallogr. A. 30, 431 (1974).CrossRefGoogle Scholar
20.Guymont, M., Gratias, D., Portier, R., and Fayard, M., Phys. Status Solidi 38, 629 (1976).CrossRefGoogle Scholar
21.Howe, J. M., Interfaces in Materials (John Wiley and Sons, New York, 1997).Google Scholar
22.Hunt, J. D. and Jackson, K. A., Trans. AIME 236, 843 (1966).Google Scholar
23.Jackson, K.A., Liquid Metals and Solidification (ASM, Metals Park, OH, 1958), p. 174.Google Scholar
24.Hunt, J. D. and Lu, S. Z., Handbook of Crystal Growth (Elsevier Science B.V., 1994), Vol. 2.Google Scholar
25.Kopczynski, P., Rappel, W. J., and Karma, A., Phys. Rev. Lett. 77, 3387 (1996).CrossRefGoogle Scholar
26.Barin, I. and Platzki, G., Thermochemical Data of Pure Substances (VCH, Weinheim, 1995).CrossRefGoogle Scholar
27.Stenton, N., Notis, M. R., and Williams, D. B., J. Am. Ceram. Soc. 67, 227 (1984).CrossRefGoogle Scholar