Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T15:50:53.394Z Has data issue: false hasContentIssue false

Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries

Published online by Cambridge University Press:  31 January 2011

Bin Liu
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Jim Yang Lee
Affiliation:
Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260
Eray S. Aydil*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
*
a)Address all correspondence to this author. e-mail: aydil@umn.edu
Get access

Abstract

A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Che, G.L., Lakshmi, B.B., Fisher, E.R., Martin, C.R.Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346 (1998)CrossRefGoogle Scholar
2.Che, G.L., Jirage, K.B., Fisher, E.R., Martin, C.R.Chemical-vapor deposition based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 144, 4296 (1997)CrossRefGoogle Scholar
3.Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., Yoneyama, H.Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923 (1997)CrossRefGoogle Scholar
4.Sides, C.R., Martin, C.R.Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv. Mater. 17, 125 (2005)CrossRefGoogle Scholar
5.Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chang, Y.M., Belcher, A.M.Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006)CrossRefGoogle ScholarPubMed
6.Armstrong, R., Armstrong, G., Canales, J., Bruce, P.G.TiO2-B nanowires. Angew. Chem. Int. Ed. 43, 2286 (2004)CrossRefGoogle Scholar
7.Armstrong, R., Armstrong, G., Canales, J., García, R., Bruce, P.G.Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005)CrossRefGoogle Scholar
8.Bruce, P.G., Scrosati, B., Tarascon, J-M.Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRefGoogle ScholarPubMed
9.Kavan, L., Kalbáč, M., Zukalová, M., Exnar, I., Lorenzen, V., Nesper, R., Graetzel, M.Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 16, 477 (2004)CrossRefGoogle Scholar
10.Zukalová, M., Kalbáč, M., Kavan, L., Exnar, I., Graetzel, M.Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005)CrossRefGoogle Scholar
11.Wang, Y., Lee, J.Y., Zeng, H.C.Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005)CrossRefGoogle Scholar
12.Wang, Y., Zeng, H.C., Lee, J.Y.Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18, 645 (2006)CrossRefGoogle Scholar
13.Cheng, F., Tao, Z., Liang, J., Chen, J.Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 20, 667 (2008)CrossRefGoogle Scholar
14.Park, M-S., Wang, G-X., Kang, Y-M., Wexler, D., Dou, S-X., Liu, H-K.Preparation and electrochemical properties of SnO2nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750 (2007)CrossRefGoogle Scholar
15.Park, M-S., Kang, Y-M., Wang, G-X., Dou, S-X., Liu, H-K.Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Adv. Funct. Mater. 18, 455 (2008)CrossRefGoogle Scholar
16.Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U., Sunkara, M.K.Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612 (2009)CrossRefGoogle ScholarPubMed
17.Kim, D-W., Hwang, I-S., Kwon, S.J., Kang, H-Y., Park, K-S., Choi, Y-J., Choi, K-J., Park, J-G.Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7, 3041 (2007)CrossRefGoogle Scholar
18.Lou, X.W., Deng, D., Lee, J.Y., Archer, L.A.Self supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258 (2008)CrossRefGoogle Scholar
19.Li, Y.G., Tan, B., Wu, Y.Y.Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8, 265 (2008)CrossRefGoogle ScholarPubMed
20.Chan, C.K., Zhang, X.F., Cui, Y.High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008)CrossRefGoogle ScholarPubMed
21.Chan, C.K., Peng, H.L., Liu, G., Mcilwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle ScholarPubMed
22.Cui, L-F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2009)CrossRefGoogle ScholarPubMed
23.Kim, D.K., Muralidharan, P., Lee, H-W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H.L., Huggins, R.A., Cui, Y.Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008)CrossRefGoogle ScholarPubMed
24.Reddy, L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002 (2009)CrossRefGoogle ScholarPubMed
25.Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.S.Synthesis of single crystalline spinel LiMn2O4 nanowires for lithium in battery with high power density. Nano Lett. 9, 1045 (2009)CrossRefGoogle ScholarPubMed
26.Hu, Y-S., Liu, X., Müller, J-O., Schlögl, R., Maier, J., Su, D.S.Synthesis and electrode performance of nanostructured V2O5 by using carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. 48, 210 (2009)CrossRefGoogle Scholar
27.Hu, Y-S., Kienle, L., Guo, Y-G., Maier, J.High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421 (2006)CrossRefGoogle Scholar
28.Zhou, H.S., Li, D.L., Hibino, M., Honma, I.A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Ed. 44, 797 (2005)CrossRefGoogle ScholarPubMed
29.Jiang, C.H., Wei, M.D., Qi, Z.M., Kudo, T., Honma, I., Zhou, H.S.Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166, 239 (2007)CrossRefGoogle Scholar
30.Lan, Y., Gao, X.P., Zhu, H.Y., Zheng, Z.F., Yan, T.Y., Wu, F., Ringer, S.P., Song, D.Y.Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310 (2005)CrossRefGoogle Scholar
31.Li, J., Tang, S.B., Lu, L., Zeng, H.C.Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129, 9401 (2007)CrossRefGoogle ScholarPubMed
32.Wang, K.X., Wei, M.D., Morris, M.A., Zhou, H.S., Holmes, J.D.Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater. 19, 3016 (2007)CrossRefGoogle Scholar
33.Lou, X.W., Archer, L.A.A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater. 20, 1853 (2008)CrossRefGoogle Scholar
34.Wagemaker, M., Borghols, W.J.H., Mulder, F.M.Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323 (2007)CrossRefGoogle ScholarPubMed
35.Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M.Impact of nanosizing on lithiated rutile TiO2. Chem. Mater. 20, 2949 (2008)CrossRefGoogle Scholar
36.Ortiz, G.F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J.L., Knauth, P.Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009)CrossRefGoogle Scholar
37.Liu, B., Boercker, J.E., Aydil, E.S.Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19, 505604 (2008)CrossRefGoogle ScholarPubMed
38.Boercker, J.E., Enache Pommer, E., Aydil, E.S.Growth mechanism of titanium dioxide nanowires for dye sensitized solar cells. Nanotechnology 19, 095604 (2008)CrossRefGoogle ScholarPubMed
39.Kavan, L., Grätzel, M., Rathouský, J., Zukal, A.Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc. 143, 394 (1996)CrossRefGoogle Scholar
40.Kavan, L., Rathouský, J., Grätzel, M., Shklover, V., Zukal, A.Surfactant-templated TiO2 (anatase): Characteristic features of lithium insertion electrochemistry in organized nanostructures. J. Phys. Chem. B 104, 12012 (2000)CrossRefGoogle Scholar
41.Wagemaker, M., van de Krol, R., Kentgens, A.P.M., van Well, A.A., Mulder, F.M.Two phase morphology limits lithium diffusion in TiO2 (anatase): A Li-7 MAS NMR study. J. Am. Chem. Soc. 123, 111454 (2001)CrossRefGoogle Scholar
42.Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett. 9, A139 (2006)CrossRefGoogle Scholar
43.Li, Q.J., Zhang, J.W., Liu, B.B., Li, M., Liu, R., Li, X.L., Ma, H.L., Yu, S.D., Wang, L., Zou, Y.G., Li, Z.P., Zou, B., Cui, T., Zou, G.T.Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47, 9870 (2008)CrossRefGoogle ScholarPubMed
44.Ohzuku, T., Kodama, T., Hirai, T.Electrochemistry of anatase titanium-dioxie in lithum noaqueous cells. J. Power Sources 14, 153 (1985)CrossRefGoogle Scholar