Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:23:19.939Z Has data issue: false hasContentIssue false

Origin of strength change in ceramics associated with the alteration of spray dryer

Published online by Cambridge University Press:  31 January 2011

T. Hotta
Affiliation:
Japan Fine Ceramics Center, Mutsuno, Atsutaku, Nagoya, Japan
K. Nakahira
Affiliation:
Japan Fine Ceramics Center, Mutsuno, Atsutaku, Nagoya, Japan
M. Naito*
Affiliation:
Japan Fine Ceramics Center, Mutsuno, Atsutaku, Nagoya, Japan
N. Shinohara
Affiliation:
Asahi Grass Co., Hazawa, Kanagawaku, Yokohama, Japan
M. Okumiya
Affiliation:
Asahi Grass Co., Hazawa, Kanagawaku, Yokohama, Japan
K. Uematsu
Affiliation:
Department of Chemistry, Nagaoka University of Technology, Nagaoka, Japan
*
a) Address all correspondence to this author.
Get access

Abstract

A significant difference of strength was noted in alumina ceramics made through the powder compaction process with spray dryers of two sizes. The origin of the change was examined by new characterization methods involving optical microscopy. The granules were found to have irregular shape. Defects in compacts were formed from these dimples and also from the nonuniform packing of powder particles at the granule boundaries. These defects are responsible for major defects in sintered bodies. The change of strength in the ceramics can be explained by the change of granule size with the spray dryer. The size of granules was found to directly affect the size of defects in the green and sintered bodies. The size of granules, defects in granules, green bodies, and sintered bodies were approximately 20–30% smaller for granules made with the small spray drier. There was a direct correlation between the size of defect and the strength of ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lange, F.F., J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
2.Kingery, W.D., in Ceramic Processing Before Firing, edited by Onoda, G.Y. and Hench, L.L. (Wiley, New York, 1978), pp. 291305.Google Scholar
3.Uematsu, K., Powder Technol. 88, 291 (1996).CrossRefGoogle Scholar
4.Uematsu, K., Ohsaka, S., Takahashi, H., Shinohara, N., Okumiya, M., Yokota, Y., Tamiya, K., Takahashi, S., and Ohira, T., J. Eur. Ceram. Soc. 17(2–3) 177 (1997).CrossRefGoogle Scholar
5.Uematsu, K., Ito, H., Ohsaka, S., Takahashi, H., Shinohara, N., and Okumiya, M., J. Am. Ceram. Soc. 78, 3107 (1995).CrossRefGoogle Scholar
6.Uematsu, K., Kim, J-Y., Miyashita, M., Uchida, N., and Saito, K., J. Am. Ceram. Soc. 73, 2555 (1990).CrossRefGoogle Scholar
7.Uematsu, K., Tanaka, T., Zhang, Y., and Uchida, N., J. Ceram. Soc. Japan 101, 1400 (1993).CrossRefGoogle Scholar
8.Uematsu, K., Ito, H., Zhang, Y., and Uchida, N., Ceram. Trans. 54, 83 (1995).Google Scholar
9.Takahashi, H., Shinohara, N., Okumiya, M., Uematsu, K., Tsubaki, J., Iwamoto, Y., and Kamiya, H., J. Am. Ceram. Soc. 78(4), 903 (1995).CrossRefGoogle Scholar
10.Uematsu, K., Kim, J-Y., Kato, Z., Uchida, N., and Saito, K., J. Ceram. Soc. Japan 98, 515 (1990).CrossRefGoogle Scholar
11.Uematsu, K., Miyashita, M., Kim, J-Y., Kato, Z., and Uchida, N., J. Am. Ceram. Soc. 74, 2170 (1991).CrossRefGoogle Scholar
12.Zhang, Y., Uchida, N., Uematsu, K., J. Mater. Sci. 30, 1357 (1995).CrossRefGoogle Scholar
13.Takahashi, H., Shinohara, N., and Uematsu, K., J. Ceram. Soc. Japan 104, 59 (1996).CrossRefGoogle Scholar
14.Iwamoto, Y., Nomura, H., Sugiura, I., Tsubaki, J., Takahashi, H., Ishikawa, K., Shinohara, N., Okumiya, M., Yamada, T., Kamiya, H., and Uematsu, K., J. Mater. Res. 9, 1208 (1994).CrossRefGoogle Scholar
15.Uematsu, K., Miyashita, M., Kim, J-Y., and Uchida, N., J. Am. Ceram. Soc. 75(4), 1016 (1992).CrossRefGoogle Scholar
16.Takahashi, H., Shinohara, N., Uematsu, K., and Tsubaki, J., J. Am. Ceram. Soc. 79(4), 843 (1996).CrossRefGoogle Scholar
17.Japan Fine Ceramics Center, Technical Report (TR-AL1) (JFCC, Japan, 1995).Google Scholar
18.Uematsu, K., Sekiguchi, M., Kim, J-Y., Saito, K., Mutoh, Y., Inoue, M., and Fujino, Y., J. Mater. Sci. 28, 1788 (1993).CrossRefGoogle Scholar
19.DiMarcello, F.V., Key, P.L., and Williams, J.C., J. Am. Ceram. Soc. 55, 509 (1972).CrossRefGoogle Scholar
20.Nakada, Y. and Schock, T.L., J. Am. Ceram. Soc. 58, 409 (1975).CrossRefGoogle Scholar
21.Uematsu, K., Osaka, S., Shinohara, N., and Okumiya, M., J. Am. Ceram. Soc., in press.Google Scholar
22.Lange, F.F., in Fracture Mechanics of Ceramics, Vol. 1, edited by Bradt, R.C., Hasselman, D.P.H, and Lange, F.F. (Plenum, New York, 1973), pp. 315.Google Scholar
23.Zheng, J. and Reed, J.S., J. Am. Ceram. Soc. 72, 810 (1989).CrossRefGoogle Scholar
24.Lukasiewicz, S.J., J. Am. Ceram. Soc. 72(4), 617 (1989).CrossRefGoogle Scholar
25.Shinohara, N., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., and Uematsu, K., J. Mater. Sci. (in press).Google Scholar
26.Yeh, T-S. and Sacks, M.D., Ceram. Trans. 7, 309 (1990).Google Scholar