Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T22:58:23.778Z Has data issue: true hasContentIssue false

Origins of stored enthalpy in cryomilled nanocrystalline Zn

Published online by Cambridge University Press:  31 January 2011

Xinghang Zhang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
Haiyan Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
Magdy Kassem
Affiliation:
Department of Mat. and Met.Engineering Faculty of Pet. & Mining Eng., Suez Canal University, Suez, Egypt
Jagdish Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
Carl C. Koch*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
*
a)Address all correspondence to this author. e-mail: carl_koch@ncsu.edu
Get access

Abstract

Nanocrystalline Zn was prepared by cryomilling (mechanical attrition at liquid nitrogen temperature). Differential scanning calorimetry (DSC), x-ray diffraction, and transmission electron microscopy were used to study the structural changes and grain size distribution with milling time and subsequent annealing. Maxima in both stored enthalpy (for the low-temperature DSC peak) and lattice strain on the Zn basal planes were observed at the same milling time. Dislocation density on the basal planes is proposed as a major source for lattice strain and the measured stored enthalpy. The released enthalpy that might be due to grain growth is very small.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koch, C.C., Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
2.Titchener, A.L. and Bever, M.B., Prog. Met. Phys. 7, 247 (1958).CrossRefGoogle Scholar
3.Bever, M.B., Holt, D.L., and Titchener, A.L., Prog. Mater. Sci. 17, 1 (1973).CrossRefGoogle Scholar
4.Hansen, N., Mater. Sci. Technol. 6, 1039 (1990).CrossRefGoogle Scholar
5.Bay, B., Hansen, N., Hughes, D.A., and Kuhlmann-Wilsdorf, D., Acta Metall. Mater. 2, 205 (1992).CrossRefGoogle Scholar
6.Winther, G., Jensen, D.J., and Hansen, N., Acta Mater. 45, 5059 (1997).CrossRefGoogle Scholar
7.Clarebrough, L.M., Hargreaves, M.E., and Loretto, M.H., in Recovery and recrystallization of metals, edited by Himmel, L. (Inter-science, New York, 1963), p. 62.Google Scholar
8.Martin, J.W., Doherty, R.D., and Cantor, B., Stability of Microstructure in Metallic Systems (Cambridge University Press, New York, 1997), p. 151.CrossRefGoogle Scholar
9.Averbach, B.L., Bever, M.D., Comerford, M.F., and Leach, J.L., Acta Met. 4, 477 (1956).CrossRefGoogle Scholar
10.Michell, D., Philos. Mag. 1, 584 (1956).CrossRefGoogle Scholar
11.Michell, D. and Haig, F.D.. Philos. Mag. 2, 15 (1957).CrossRefGoogle Scholar
12.Narayan, J., Wear 25, 99 (1973).CrossRefGoogle Scholar
13.Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena (Pergamon Press, London, United Kingdom, 1996), p. 12.Google Scholar
14.Barrett, C.S. and Massalski, T.D., Structure of Metals, 3rd (revised) ed. (McGraw-Hill, New York, 1980).Google Scholar
15.Eckert, J., Holzer, J.C., Krill, C.E., and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
16.Koch, C.C., Nanostruct. Mater. 9, 13 (1997).CrossRefGoogle Scholar
17.Zhang, X., Wang, H., Narayan, J., and Koch, C.C., Acta Mater. 49, 1319 (2001).CrossRefGoogle Scholar
18.Hellstern, E., Fecht, H.J., Fu, Z., and Johnson, W.L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
19.Oleszak, D. and Shingu, P.H., J. Appl. Phys. 79, 2975 (1996).CrossRefGoogle Scholar
20.Enzo, S., Sampoli, M., Cocco, G., Schiffini, L., and Battezzati, L., Philos. Mag. B 59, 169 (1989).CrossRefGoogle Scholar
21.Malow, T.R. and Koch, C.C., Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar
22.Smith, A.P., Solid State Blending and Compatibilization of Polymers by Cryogenic Mechanical Alloying, Ph.D. Thesis, North Carolina State University, (1999).CrossRefGoogle Scholar
23.Williamson, G.K. and Hall, W.H., Acta Mater. 1, 22 (1953).CrossRefGoogle Scholar
24.Kissinger, H.E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
25.Grewen, J., Proc. 3rd Coll. Eur. Sur Textures (Pont-a-Mousson, 1973), p. 195.Google Scholar
26.Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena (Pergamon Press, London, United Kingdom, 1996), p. 38.Google Scholar
27.Fecht, H.J., Nanostruct. Mater. 6, 33 (1995).CrossRefGoogle Scholar
28.Hirth, J.P. and Lothe, J.,Theory of Dislocations, 2nd ed. (New York, Wiley, 1982), p. 80.Google Scholar
29.Narayan, J. and , A.S.Nandedkar, Philos. Mag. B63, 1181 (1991).CrossRefGoogle Scholar
30.Schmidt, J., Thermochim. Acta 151, 333 (1989).CrossRefGoogle Scholar
31.Honeycombe, R.W.K., The Plastic Deformation of Metals, 2nd ed. (Edward Arnold Ltd., London, United Kingdom, 1984), p. 209.Google Scholar
32.Wadja, E.S., Acta Mater. 2, 184 (1954).Google Scholar
33.Peterson, N.L., J. Nucl. Mater. 69&70, 337 (1979).Google Scholar
34.Milligan, W.W., Hackney, S.A., Ke, M., and Aifantis, E.C., Nano-struct. Mater. 2, 269 (1993).CrossRefGoogle Scholar
35.Ke, M., Hackney, S.A., Milligan, W.W., and Aifantis, E.E., Nano-struct. Mater. 5, 689 (1995).CrossRefGoogle Scholar
36.Hackney, S.A., Ke, M., Milligan, W.W., and Aifantis, E.C., in Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J., and Froes, F.H. (TMS, Warrendale, PA, 1996), p. 421.Google Scholar
37.Fridman, E.M., Kopezky, C.V., and Shvindlerman, L.S., Z. Metallkd. 66, 533 (1975).Google Scholar
38.Valiev, R.Z., Gertsman, V.Yu., and Kaibyshev, O.A., Phys. Status Solidi A 97, 11 (1986).CrossRefGoogle Scholar
39.Valiev, R.Z., Kaibyshev, O.A., and Khnnanov, Sh. Kh., Phys. Status Solidi A 52, 447 (1979).CrossRefGoogle Scholar
40.Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C., Acta Mater. 49, 1497 (2001).CrossRefGoogle Scholar