Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T20:22:36.836Z Has data issue: false hasContentIssue false

Oxidation kinetics of Pb–Sn alloys

Published online by Cambridge University Press:  31 January 2011

R. A. Konetzki
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
Y. A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
V. C. Marcotte
Affiliation:
IBM General Technology Division, East Fishkill Facility, Hopewell Junction. New York 12533
Get access

Abstract

The solid state oxidation kinetics of Pb–Sn single-phase (2.5 at. % Sn) and eutectic alloys were studied with Auger Electron Spectroscopy combined with sputter depth profiling. The single-phase samples were oxidized in air in the temperature range 22 °C to 250 °C, while the eutectic samples were oxidized from 22 °C to 175 °C. Both alloys oxidize logarithmically between 22 °C and 90 °C and parabolically at temperatures greater than 120 °C. The activation energies for the parabolic oxidation of the single-phase and eutectic alloys are 69.5 and 67.1 ± 8 kJ/mole, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Anderson, J. R. and Tare, V. B.J. Phys. Chem. 6, 1482 (1964).Google Scholar
2Weber, E. and Baldwin, W. E. Jr. , J. Metals 194, 854 (1952).Google Scholar
3Eldridge, J.M. and Dong, D.Surf. Sci. 40, 512 (1973).CrossRefGoogle Scholar
4Chou, N.J.Eldridge, J. M.Hammer, R. and Dong, D.J. Electronic Maters. 2, 115 (1973).Google Scholar
5Hapase, M. G.Gharpurey, M.K. and Biswas, A. B.Surf. Sci. 12, 85 (1968).CrossRefGoogle Scholar
6Thompson, B. A. and Strong, R. L.J. Phys. Chem. 67, 594 (1963).Google Scholar
7Lindner, R. and Terem, H.N.Arkiv Kemi 7, 273 (1954).Google Scholar
8Britton, S. C. and Bright, K.Metallurgia 56, 163 (1957).Google Scholar
9Nagasaka, M.Fuse, H. and Yamashina, T.Thin Solid Films 29, L29 (1975).CrossRefGoogle Scholar
10Boggs, W.E.Kachik, R.H. and Pellissier, G.E.J. Electrochem. Soc. 108, 6 (1961).CrossRefGoogle Scholar
11Luner, C.Trans. AIME 218, 572 (1960).Google Scholar
12Kurz, R. and Kleiner, E.J. Mater. Tech. 2, 418 (1971).Google Scholar
13Stoneman, A. M. and MacKay, C. A.Metall 34, 49 (1980).Google Scholar
14Konetzki, R.A. and Chang, Y. A.J. Mater. Res. 3, 466 (1988).CrossRefGoogle Scholar
15Farrell, T.Metal Sci. 10, 87 (1976).CrossRefGoogle Scholar
16Frankenthal, R.P. and Siconolfi, D.J.J. Vac. Sci. Tech. 17, 1315 (1980).CrossRefGoogle Scholar
17Bird, R. J.Metal Sci. 7, 109 (1973).Google Scholar
18Cabrera, N. and Mott, N.F.Report Progr. Phys. 12, 163 (1948).Google Scholar
19Ghez, R.J. Chem. Phys. 58, 1838 (1973).CrossRefGoogle Scholar
20Uhlig, H. H.Acta Metall. 4, 541 (1956).CrossRefGoogle Scholar
21Williams, E. C. and Hayfield, P. C. S.Vacancies and Other Point Defects in Metals and Alloys,” Institute of Metals Monograph No. 23, 131 (1957).Google Scholar
22Eley, D. D. and Wilkinson, P. R.Proc. R. Soc. Ser. 254A, 327 (1960).Google Scholar
23Evans, U. R.The Corrosion and Oxidation of Metals (Edward Arnold Ltd., London, 1960).Google Scholar
24Fromhold, A.T. Jr. , J. Electrochem. Soc. 115, 882 (1968).CrossRefGoogle Scholar
25Roy, S. K. and Sircar, S. C.Oxidation of Metals 15, 9 (1981).CrossRefGoogle Scholar
26Mott, N. F.Trans. Faraday Soc. 36, 472 (1940).Google Scholar
27Tammann, G.Z. Anorg. Allg. Chem. 124, 25 (1922).Google Scholar
28Lanyon, M. A. H. and Trapnell, E. M.Proc. R. Soc. Ser. 227A, 387 (1955).Google Scholar
29Frankenthal, R.P. and Siconolfi, D.J.Surf. Sci. 104, 331 (1982).Google Scholar
30Villars, P. and Calvert, L. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, 1985).Google Scholar