Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:28:03.719Z Has data issue: false hasContentIssue false

Oxygen self-diffusion in cerium oxide doped with Nd

Published online by Cambridge University Press:  31 January 2011

Michiyo Kamiya
Affiliation:
Kanagawa Institute of Technology, 1030 Shimoogino Atsugi, Kanagawa 243-0292, Japan
Eriko Shimada
Affiliation:
Kanagawa Institute of Technology, 1030 Shimoogino Atsugi, Kanagawa 243-0292, Japan
Yasuro Ikuma
Affiliation:
Kanagawa Institute of Technology, 1030 Shimoogino Atsugi, Kanagawa 243-0292, Japan
Manabu Komatsu
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan
Hajime Haneda
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan
Soichiro Sameshima
Affiliation:
Kagoshima University, 1-21-40 Korimoto Kagoshima, Kagoshima 890-0065, Japan
Yoshihiro Hirata
Affiliation:
Kagoshima University, 1-21-40 Korimoto Kagoshima, Kagoshima 890-0065, Japan
Get access

Abstract

Polycrystalline Ce0.77Nd0.23O1.885 having a relative density in excess of 98% was prepared. Oxygen diffusion experiments were performed for the temperature range from 750 to 1100 °C, in an oxygen partial pressure of 6.6 kPa. The concentration profile of 18O in the specimens following diffusion annealing was measured by secondary ion mass spectroscopy (SIMS). The oxygen self-diffusion coefficient obtained using secondary ion mass spectrometry was expressed by D = 6.31 × 10−9 exp(−53 kJ mol−1/RT) m2 s−1 and was in the extrinsic region. The oxygen diffusion coefficient of Ce0.77Nd0.23O1.885 was larger than that of Ce0.8Y0.2O1.90; it was close to those of Ce0.6Y0.4O1.80 and Ce0.69Gd0.31O2−δ. The oxygen diffusion coefficient obtained by the tracer method at 700 °C agreed with that calculated from the electrical conductivity in Ce0.77Nd0.23O1.885. The activation energy of the surface exchange coefficient was 94 kJ mol−1, and the values of the surface exchange coefficient were similar to those of stoichiometric CeO2 and ThO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H., Solid State Ionics 52, 165 (1992).Google Scholar
2.Schneider, D., Gödickemeier, M., and Gauckler, L.J., Electroceram, J. 1:2, 165 (1997).Google Scholar
3.Uchida, H., Suzuki, H., and Watanabe, M., J. Electrochem. Soc. 145, 615 (1998).CrossRefGoogle Scholar
4.Hong, S.J., Mehta, K., and Virkar, A., J. Electrochem. Soc. 145, 638 (1998).Google Scholar
5.Wang, S., Inaba, H., Tagawa, H., Dokiya, M., and Hashimoto, T., Solid State Ionics 107, 73 (1998).Google Scholar
6.Dirstine, R.T., Blumenthal, R.N., and Kuech, T., J. Electrochem. Soc.: Solid-State Sci. Technol. 126, 264 (1979).Google Scholar
7.Van Herle, J., Horita, T., Kawada, T., Sasaki, N., Yokokawa, H., and Dokiya, M., J. Eur. Ceram. Soc. 16, 961 (1996).Google Scholar
8.Navarro, L., Marques, F., and Frade, J., J. Electrochem. Soc. 144, 267 (1997).CrossRefGoogle Scholar
9.Huang, K., Feng, M., and Goodenough, J.B., J. Am. Ceram. Soc., 81, 357 (1998).CrossRefGoogle Scholar
10.Riess, I., Braunshtein, D., and Tannhauser, D.S., J. Am. Ceram. Soc. 64, 479 (1981).Google Scholar
11.Manning, P.S., Sirman, J.D., and Kilner, J.A., Solid State Ionics 93, 125 (1997).Google Scholar
12.Ruiz-Trejo, E., Sirman, J.D., Y., , Baikov, M., and Kilner, J.A., Solid State Ionics 113–115, 565 (1998).Google Scholar
13.Vinokrov, I.V., Zonn, Z.N., and Ioffe, V.A., Sov. Phys. Solid State 7, 814 (1965).Google Scholar
14.Ikuma, Y. and Murakami, T., J. Electrochem. Soc. 143, 2698 (1996).CrossRefGoogle Scholar
15.Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, United Kingdom, 1975), p. 36.Google Scholar
16.Kamiya, M., Shimada, E., Ikuma, Y., Komatsu, M., and Haneda, H., J. Electrochem. Soc. 147, 1222 (2000).Google Scholar
17. Joint Committeeon Powder Diffraction Standards File No. 4–0593.Google Scholar
18.Higashi, K., Sonoda, K., Ono, H., Sameshima, S., and Hirata, Y., J. Mater. Res. 14, 957 (1999).CrossRefGoogle Scholar
19.Nowick, A.S., in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A.S. (Academic Press, New York, 1984), pp. 152176.Google Scholar
20.Hirata, Y., Ono, H., Higashi, K., Sonoda, K., Sameshima, S., and Ikuma, Y., Ceram. Trans. 92, 137 (1999).Google Scholar
21.Floyd, J.M., Indian J. Technol. 11, 589 (1973).Google Scholar
22.Ando, K. and Oishi, Y., J. At. Energy Soc. Jpn. 23, 891 (1981).Google Scholar