Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T04:28:24.457Z Has data issue: false hasContentIssue false

Partial melting and segregation behavior in a superplastic Si3N4/Al–Mg alloy composite

Published online by Cambridge University Press:  03 March 2011

J. Koike*
Affiliation:
Department of Mechanical Engineering. Oregon State University, Corvallis, Oregon 97331
M. Mabuchi
Affiliation:
National Industrial Research Institute of Nagoya, 1 Hirate-cho, Kita-ku, Nagoya 462, Japan
K. Higashi
Affiliation:
Department of Mechanical Systems Engineering, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 593, Japan
*
a)Present address: Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan.
Get access

Abstract

AJ-Mg alloy (5052) composite reinforced with Si3N4 particulates was investigated by transmission electron microscopy and electron energy loss spectroscopy. Partial melting was observed at matrix/reinforcement interfaces and matrix grain boundaries at a temperature near an optimum superplastic temperature. Segregation of solute elements (Mg and Si) was observed at the interfaces and grain boundaries. Both partial melting and solute segregation were found to depend on grain boundaries. The obtained results were explained by a decrease of the solidus temperature due to segregation whose extent depends on the type of the grain boundary structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nieh, T. G., Henshall, C. A., and Wadsworth, J., Scripta Metall. 18, 1405 (1984).CrossRefGoogle Scholar
2Mabuchi, M., Higashi, K., Okada, Y., Tanimura, S., Imai, T., and Kubo, K., Scripta Metall. et Mater. 25, 2003 (1991).CrossRefGoogle Scholar
3Mabuchi, M., Higashi, K., Inoue, K., and Tanimura, S., Scripta Metall. et Mater. 26, 1839 (1992).Google Scholar
4Mabuchi, M., Higashi, K., Wada, S., and Tanimura, S., Scripta Metall. et Mater. 26, 1269 (1992).CrossRefGoogle Scholar
5Hamilton, C. H., Bampton, C. C., and Paton, N. E., Superplastic Forming of Structural Alloys, edited by Paton, N. E. and Hamilton, C. H. (TMS AIME, Warrendale, PA, 1982), p. 173.Google Scholar
6Bampton, C. C., Wert, J. A., and Mahoney, M. W., Metall. Trans. 13A, 193 (1982).CrossRefGoogle Scholar
7Strangwood, M., Hippsley, C. A., and Lewandowski, J. J., Scripta Metall. et Mater. 24, 1483 (1990).CrossRefGoogle Scholar
8Higashi, K., Mater. Sci. Eng. A166, 109 (1993).Google Scholar
9Koike, J., Mabuchi, M., and Higashi, K., Acta Metall. et Mater, (tobe published).Google Scholar
10Clarke, D. R. and Gee, M. L., Materials Interfaces, edited by Wolf, D. and Yip, S. (Chapman and Hall, New York, 1992), p. 255.Google Scholar
11Nutt, S. R. and Carpenter, R. W., Mater. Sci. Eng. 75, 169 (1985).Google Scholar
12L'Esperance, G., Imai, T., and Hong, B., Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M., and Furushiro, N. (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 379.Google Scholar
13Edgerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986), p. 262.Google Scholar
14Watanabe, T., Kitamura, S., and Karashima, S., Acta Metall. 28, 455 (1980).CrossRefGoogle Scholar
15Watanabe, T., Murakami, T., and Karashima, S., Scripta Metall. 12, 361 (1978).CrossRefGoogle Scholar
16Fraczkiewicz, A. and Biscondi, M., J. Phys. C4, 497 (1985).Google Scholar
17Marcus, H. L., Hackett, L. H. Jr., and Palmberg, P. W., ASTM Data Series, STP 499 (1972), p. 90.Google Scholar
18Nieh, T. G. and Wadsworth, J., JOM 11, 46 (1992).Google Scholar
19Murray, J. L., Bull. Alloy Phase Diagrams 3, 60 (1982).CrossRefGoogle Scholar
20Murray, J. L. and McAlister, A. J., Bull. Alloy Phase Diagrams 5, 74 (1984).CrossRefGoogle Scholar
21Ning, X. G., Pan, J., Hu, K. Y., and Ye, H. Q., Philos. Mag. A 66, 811 (1992).Google Scholar
22Ribes, H., Suery, M., L'Esperance, G., and Legoux, J. G., Metall. Trans. 21A, 2489 (1990).Google Scholar
23Wang, N., Wang, Z., and Weatherly, G., Metall. Trans. 23A, 1423 (1991).Google Scholar
24Furushiro, N. and Hori, S., in Superplasticity in Metals, Ceramics,and Intermetallics, edited by Mayo, M. J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 249.Google Scholar
25Higashi, K., Tanimura, S., and Ito, T., in Superplasticity inMetals, Ceramics, and Intermetallics, edited by Mayo, M. J., Kobayashi, M., and Wadsworth, J. (Mater.Google Scholar
26Higashi, K., Okada, T., Mukai, T., and Tanimura, S., Scripta Metall. et Mater. 25, 2053 (1991).CrossRefGoogle Scholar
27Wang, J-G. and Raj, R., J. Am. Ceram. Soc. 67, 385 (1984).Google Scholar
28Roth, M. C., Weatherly, G. C., and Miller, W. A., Acta Metall. 28, 841 (1980).Google Scholar
29Pharr, G. M., Godavarti, P. S., and Vaandrager, B. L., J. Mater. Sci. 24, 784 (1989).Google Scholar