Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T06:59:11.425Z Has data issue: false hasContentIssue false

Particle size distributions of aerosols formed by laser ablation of solids at 760 Torr

Published online by Cambridge University Press:  03 March 2011

Robert R. Whitlock
Affiliation:
United States Naval Research Laboratory, Washington, DC 20375-5000
Glendon M. Frick
Affiliation:
United States Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

The size distributions of aerosol particles generated in N2 and O2 at ambient atmospheric pressure by repetitive excimer laser ablation of solids have been measured in quasi-steady-state from 10 nm to 1 μm diameter with a differential mobility analyzer (DMA). A light scattering technique extended the range of measurable sizes up to 20 μm, beyond the upper limit of sizes observed in the aerosol. Irradiation near focus was required to observe metal particles above 0.1 μm diameter. YBCO ceramic (YBa2Cu3O7) produced copious smaller particles with mild focusing. For an ablated polymer, PMMA, particulate production increased and the size distribution altered shape with continued energy deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Duley, W. W., CO2 Lasers Effects and Applications (Academic Press, New York, 1976).Google Scholar
2Greig, J. R. and Pechacek, R. E., Appl. Phys. Lett. 29, 798800 (1976).CrossRefGoogle Scholar
3Schaefer, R. J., Tucker, T. R., and Ayers, J. D., in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic Press, New York, 1980), pp. 754759.CrossRefGoogle Scholar
4Laser Materials Processing, edited by Bass, M. (North-Holland Publishing Co., Amsterdam, 1983).CrossRefGoogle Scholar
5Wiedenaur, R., Vollmer, M., Hoheisel, W., Schulte, U., and Träger, F., J. Vac. Sci. Technol. A 7, 19721974 (1989).CrossRefGoogle Scholar
6Hoheisel, W., Schulte, U., Vollmer, M., and Träger, F., Appl. Phys.A 51, 271280 (1990).CrossRefGoogle Scholar
7Duley, W. W., Laser Processing and Analysis of Materials (Plenum Press, New York, 1983).CrossRefGoogle Scholar
8Mie, G., Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
9Beddow, J. K., Particulate Science and Technology (Chemical Publishing Co., New York, 1980), p. 158.Google Scholar
10Ready, J. F., Effects of High-Power Laser Radiation (Academic Press, New York, 1971), Chap. 4.Google Scholar
11Matsunawa, A. and Katayama, S., in Proc. Int. Conf. on Applications of Lasers and Electro-optics, Nov. 11–14, 1985, in San Francisco, CA (Springer-Verlag, New York, 1986), pp. 205211.Google Scholar
12Leuchtner, R. E., Chrisey, D. B., and Horwitz, J. S., in SPIE, Vol. 1835, Excimer Lasers (1992), 1993, pp. 3141; Chen, L., Hall, E. L., and Lou, K. A., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), pp. 377383.Google Scholar
13Misra, D. S. and Palmer, S. B., Physica C 176, 4348 (1991).CrossRefGoogle Scholar
14Pinnick, R. G. and Auvermann, H. J., J. Aerosol Sci. 10, 5574 (1979).CrossRefGoogle Scholar
15Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E., and Mack, E. J., J. Geophys. Res. 95, 36593686 (1990).CrossRefGoogle Scholar
16Hoppel, W. A., J. Aerosol Sci. 9, 4154 (1978).CrossRefGoogle Scholar
17Hoppel, W. A. and Frick, G. M., Aerosol. Sci. Tech. 5, 121 (1986).CrossRefGoogle Scholar
18Geserich, H. P., Kock, B., Dürrler, M., and Wolf, Th., in Electronic Properties of High Tc Superconductors and Related Compounds, edited by Kuzmany, H., Mehring, M., and Fink, J. (Springer-Veriag, Berlin, 1990), pp. 265269.CrossRefGoogle Scholar
19Chrisey, D. B., Horwitz, J. S., and Leuchtner, R. E., Thin Solid Films 206, 111115 (1991).CrossRefGoogle Scholar