Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T17:39:16.798Z Has data issue: false hasContentIssue false

PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron

Published online by Cambridge University Press:  31 January 2011

Xiaomei Jiang*
Affiliation:
Nanotech Institute, University of Texas at Dallas, Richardson, Texas 75083; and Physics Department, University of South Florida, Tampa, Florida 33620
Richard D. Schaller
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Sergey B. Lee
Affiliation:
Nanotech Institute, University of Texas at Dallas, Richardson, Texas 75083; and Plextronics, Inc., Pittsburgh, Pennsylvania 15238
Jeffrey M. Pietryga
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Victor I. Klimov
Affiliation:
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Anvar A. Zakhidov
Affiliation:
Nanotech Institute, University of Texas at Dallas, Richardson, Texas 75083; and Physics Department, University of Texas at Dallas, Richardson, Texas 75083
Get access

Abstract

We investigated the photovoltaic response of nanocomposites made of colloidal, infrared-sensitive, PbSe nanocrystals (NCs) of various sizes and conjugated polymers of either regioregular poly (3-hexylthiophene) (RR-P3HT) or poly- (2-methoxy-5-(2-ethylhexoxy)-1,4-phenylene vinylene) (MEH-PPV). The conduction and valence energy levels of PbSe NCs were determined by cyclic voltammetry and revealed type II heterojunction alignment with respect to energy levels in RR-P3HT for smaller NC sizes. Devices composed of NCs and RR-P3HT show good diode characteristics and sizable photovoltaic response in a spectral range from the ultraviolet to the infrared. Using these materials, we have observed photovoltaic response at wavelengths as far to the infrared as 2 μm (0.6 eV), which is desirable due to potential benefits of carrier multiplication (or multi-exciton generation) from a single junction photovoltaic. Under reverse bias, the devices also exhibit good photodiode responses over the same spectral region.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murray, C.B., Norris, D.J.Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 1993CrossRefGoogle Scholar
2Schaller, R.D.Klimov, V.I.: High-efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 2004CrossRefGoogle ScholarPubMed
3Schaller, R.D., Petruska, M.A.Klimov, V.I.: Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 87, 253102 2005CrossRefGoogle Scholar
4Shockley, W.Queisser, H.J.: Detailed balance limit of efficiency of P–N junction solar cells. J. Appl. Phys. 32, 510 1961CrossRefGoogle Scholar
5Klimov, V.I.: Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 89, 123118 2006CrossRefGoogle Scholar
6Greenham, N.C., Peng, X.Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628 1996CrossRefGoogle ScholarPubMed
7Ginger, D.S.Greenham, N.C.: Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361 2000CrossRefGoogle Scholar
8Huynh, W.U., Dittmer, J.J.Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 2002CrossRefGoogle ScholarPubMed
9Huynh, W.U., Dittmer, J.J., Libby, W.C., Whiting, G.L.Alivisatos, A.P.: Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv. Funct. Mater. 13, 73 2003CrossRefGoogle Scholar
10Liu, J., Tanaka, T., Sivula, K., Alivisatos, A.P.Frechet, J.M.J.: Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 6550 2004CrossRefGoogle ScholarPubMed
11Sun, B., Marx, E.Greenham, N.C.: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961 2003CrossRefGoogle Scholar
12Landsberg, P.: Recombination in Semiconductors Cambridge Univ. Press Cambridge, UK 1991Google Scholar
13Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization edited by A. Marti and A. Luque IOP Publishing Bristol 2004Google Scholar
14Murray, C.B., Sun, S.H., Gaschler, W., Doyle, H., Betley, T.A.Kagan, C.R.: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47 2001CrossRefGoogle Scholar
15Pietryga, J.M., Schaller, R.D., Werder, D., Stewart, M.H., Klimov, V.I., Hollingsworth, J.A.: Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752 2004CrossRefGoogle ScholarPubMed
16Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X.Alivisatos, A.P.: Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 69, 1432 1996CrossRefGoogle Scholar
17Rogach, A.L., Harrison, M.T., Kershaw, S.V., Kornowski, A., Burt, M.G., Eychmuller, A.Weller, H.: Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys. Status Solidi 224, 153 20013.0.CO;2-3>CrossRefGoogle Scholar
18McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J.D., Levina, L.Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 2005CrossRefGoogle ScholarPubMed
19Maria, A., Cyr, P.W., Klem, E.J.D., Levina, L.Sargent, E.H.: Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 87, 213112 2005CrossRefGoogle Scholar
20Watt, A.A.R., Blake, D., Warner, J.H., Thomsen, E.A., Tavenner, E.L., Rubinsztein-Dunlop, H.Meredith, P.: Lead sulfide nanocrystal: Conducting polymer solar cells. J. Phys. D 38, 2006 2005CrossRefGoogle Scholar
21Zhang, S., Cyr, P.W., McDonald, S.A., Konstantatos, G.Sargent, E.H.: Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87, 233101 2005CrossRefGoogle Scholar
22Plass, R., Pelet, S., Krueger, J., Gratzel, M.Bach, U.: Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578 2002CrossRefGoogle Scholar
23Jiang, X., Lee, S.B., Altfeder, I.B., Zakhidov, A.A., Schaller, R.D., Pietryga, J.M.Klimov, V.I.: Nanocomposite solar cells based on conjugated polymer/PbSe quantum dot. Proc. SPIE 5938, 59381F-1 2005Google Scholar
24Cui, D., Xu, J., Zhu, T., Paradee, G., Ashok, S.Gerhold, M.: Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88, 183111 2006CrossRefGoogle Scholar
25Qi, D., Fischbein, M., Drndic, M.Selmic, S.: Efficient polymer-nanocrystal quantum-dot photodetectors. Appl. Phys. Lett. 86, 093103 2005CrossRefGoogle Scholar
26Wehrenberg, B.L.Guyot-Sionnest, P.: Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc. 125, 7806 2003CrossRefGoogle ScholarPubMed
27Haram, S.K., Quinn, B.M.Bard, A.J.: Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123, 8860 2001CrossRefGoogle ScholarPubMed
28Campbell, I.H., Hagler, T.W., Smith, D.L.Ferraris, J.P.: Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Phys. Rev. Lett. 76, 1900 1996CrossRefGoogle ScholarPubMed
29Liu, Y., Summers, M.A., Edder, C., Frechet, J.M.J.McGehee, M.D.: Using resonance energy transfer to improve exciton harvesting in organic-inorganic hybrid photovoltaic cells. Adv. Mater. 17, 2960 2005CrossRefGoogle Scholar
30Solomeshch, O., Kigel, A., Saschiuk, A., Medvedev, V., Aharoni, A., Razin, A., Eichen, Y., Banin, U., Lifshitz, E.Tessler, N.: Photoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. J. Appl. Phys. 98, 074310 2005CrossRefGoogle Scholar
31Efros, A.L.Shklovskii, B.I.: Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49 1975CrossRefGoogle Scholar
32Schaller, R.D., Agranovich, V.M.Klimov, V.I.: High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys. 1, 189 2005CrossRefGoogle Scholar
33Schaller, R.D., Sykora, M., Pietryga, J.M.Klimov, V.I.: Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424 2006CrossRefGoogle Scholar
34Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A.Bawendi, M.G.: Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287, 1011 2000CrossRefGoogle ScholarPubMed
35Evans, J.E., Springer, K.W.Zhang, J.Z.: Femotosecond studies of interparticle electron transfer on a coupled CdS–TiO2 colloidal system. J. Chem. Phys. 101, 6222 1994CrossRefGoogle Scholar
36Blackburn, J.L., Selmarten, D.C.Nozik, A.J.: Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J. Phys. Chem. B 107, 14154 2003CrossRefGoogle Scholar
37Htoon, H., Hollingsworth, J.A., Dickerson, R.Klimov, V.I.: Effect of zero- to one-dimensional transformation on multiparticle auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 91, 227401 2003CrossRefGoogle ScholarPubMed
38Huynh, W.U., Dittmer, J.J.Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 2002CrossRefGoogle ScholarPubMed
39Talapin, D.V.Murray, C.B.: PbSe Nanocrystal solids for n- and p-channel thin film field-effect transistor. Science 310, 86 2005CrossRefGoogle Scholar