Published online by Cambridge University Press: 31 January 2011
In this work, we report a method to synthesize a peculiar composite structure of tubular carbon nanofibers (CNFs) growing on a microsized tin (Sn) whisker. The material used is a commercially available copper clad laminate (CCL). The CCL is composed of a surface copper (Cu) layer and a bottom polymer (phenol-formaldehyde resin) board, in which the polymer board is used as the carbon source. Using lithography and lift-off techniques, the Cu layer was patterned to a stripelike Cu trace. A Sn thin film was then evaporated on the polymer board near the Cu trace. To release the residue stress that resulted from the evaporation; Sn whiskers with diameters of about 2 to 5 μm were formed on the Sn thin film after evaporation. By passing an electric current through the Cu trace, the Cu trace was heated due to Joule heating and served as a heating source for the thermal decomposition of phenol-formaldehyde. After heat treatment, the CNFs grew on the surface of the Sn whiskers with tubular hollow-cored structure. The diameter of the tubular CNFs is about hundreds of nanometers and their length can reach several micrometers. The growth mechanism of the brushlike composite structure is also discussed.