Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T11:37:07.106Z Has data issue: false hasContentIssue false

Phase development and photocatalytic ability of gel-derived P-doped TiO2

Published online by Cambridge University Press:  31 January 2011

Hsuan-Fu Yu*
Affiliation:
Department of Chemical and Materials Engineering, Tamkang University Tamsui, Taipei Hsien, Taiwan 25137
*
a)Address all correspondence to this author. e-mail: hfyu@mail.tku.edu.tw
Get access

Abstract

P-doped titanium dioxide (TiO2) nanoparticles were synthesized using a sol-gel method. The ethanol solution of Ti(OC2H5)4 was mixed with an aqueous solution of H3PO4 to undergo hydrolysis and polycondensation at 90 °C for 4 h. The resultant solids were centrifugally filtered, dried, and then calcined at different temperatures, followed by chemical and physical characterization. At an atomic ratio of P/Ti = 0.03, the formed P-doped TiO2 can preserve its anatase structure at 900 °C for 3 h, with no formation of other phases. Further increasing the P/Ti atomic ratio in the P-doped TiO2 may stabilize the anatase–TiO2 at even higher temperatures but may lead to the formation of TiP2O7 or (TiO)2P2O7. A test of photocatalysis showed that the P-doped TiO2 nanoparticles, with a P/Ti ratio = 0.03 and after being calcined at temperatures between 400 and 800 °C, can decompose ⩾98 mol.% of the methylene blue (MB) after 30 min of irradiation by 365-nm ultraviolet light, while P25 particles can only decompose 71 mol% of the MB.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujishima, A., Rao, T.N.Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 2000CrossRefGoogle Scholar
2Anpo, M.: Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: Approaches in realizing high efficiency in the use of visible light. Bull. Chem. Soc. Jpn. 77, 1427 2004CrossRefGoogle Scholar
3Miyake, Y.Tada, H.: Photocatalytic degradation of methylene blue with metal-doped mesoporous titania under irradiation of white light. J. Chem. Eng. Jpn. 37, 630 2004CrossRefGoogle Scholar
4Barakat, M.A., Hayes, G.Shah, S. Ismat: Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J. Nanosci. Nanotech. 5, 759 2005CrossRefGoogle ScholarPubMed
5Shi, Z.M., Yu, W.G.Bayar, X.: Study of crystallization behavior of Ce4+-modified titania gels. Scripta Mater. 50, 885 2004CrossRefGoogle Scholar
6Nair, J., Nair, P., Mizukami, F., Oosawa, Y.Okubo, T.: Microstructure and phase transformation behavior of doped nanostructured titania. Mater. Res. Bull. 34, 1275 1999CrossRefGoogle Scholar
7Zhang, Y., Zhang, H., Xu, Y.Wang, Y.: Europium doped nanocrystalline titanium dioxide: Preparation, phase transformation and photocatalytic properties. J. Mater. Chem. 13, 2261 2003CrossRefGoogle Scholar
8Zhang, Y., Zhang, H., Xu, Y.Wang, Y.: Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2. J. Solid State Chem. 177, 3490 2004CrossRefGoogle Scholar
9Burns, A., Hayes, G., Li, W., Hirvonen, J., Demaree, J.D.Shah, S.I.: Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures. Mater. Sci. Eng., B 111, 150 2004CrossRefGoogle Scholar
10Sotter, E., Vilanova, X., Llobet, E., Stankova, M.Correig, X.: Niobium-doped titania nanopowders for gas sensor applications. J. Optoelec. Adv. Mater. 7, 1395 2005Google Scholar
11Sibu, C.P., Kumar, S. Rajesh, Mukundan, P.Warrier, K.G.K.: Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem. Mater. 14, 2876 2002CrossRefGoogle Scholar
12Baiju, K.V., Sibu, C.P., Rajesh, K., Pillai, P. Krishna, Mukundan, P., Warrier, K.G.K.Wunderlich, W.: An aqueous sol-gel route to synthesize nanosized lanthanadoped titania having an increased anatase phase stability for photocatalytic application. Mater. Chem. Phys. 90, 123 2005CrossRefGoogle Scholar
13Nukumizu, K., Nunoshige, J., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H.Domen, K.: TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem. Lett.(Jpn.) 32, 196 2003CrossRefGoogle Scholar
14Umebayashi, T., Yamaki, T., Tanaka, S.Asai, K.: Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett.(Jpn.) 32, 330 2003CrossRefGoogle Scholar
15Ohno, T., Mitsui, T.Matsumura, M.: Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett.(Jpn.) 32, 364 2003CrossRefGoogle Scholar
16Irie, H., Watanabe, Y.Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett.(Jpn.) 32, 772 2003CrossRefGoogle Scholar
17Ohno, T., Tsubota, T., Nishjima, K.Miyamoto, Z.: Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem. Lett.(Jpn.) 33, 750 2004CrossRefGoogle Scholar
18Tokudome, H.Miyauchi, M.: N-doped TiO2 nanotube with visible light activity. Chem. Lett.(Jpn.) 33, 1108 2004CrossRefGoogle Scholar
19Samantaray, S.K.Parida, K.: Studies on anion-promoted titania 3: Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania. J. Mol. Catal. A 176, 151 2001CrossRefGoogle Scholar
20Yu, J.C., Zhang, L., Zheng, Z.Zhao, J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280 2003CrossRefGoogle Scholar
21Kőrösi, L.Dékány, I.: Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids Surf. Physicochem. Eng. Aspects 280, 146 2006CrossRefGoogle Scholar
22Klug, H.P.Alexander, L.E.X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2 ed.Wiley New York 1974Google Scholar
23 JCPDS No. 21-1272 and 21-1276. International Center for Diffraction Data: Swarthmore, PA, 1996.Google Scholar
24Socrates, G.Infrared and Raman Characteristic Group Frequencies: Tables and Charts 3 ed.Wiley Chichester 2001Google Scholar
25Takahashi, H., Oi, T.Hosoe, M.: Characterization of semicrystalline titanium (IV) phosphates and their selectivity of cations and lithium isotopes. J. Mater. Chem. 12, 2513 2002CrossRefGoogle Scholar
26Yu, H.: Photocatalytic abilities of gel-derived P-doped TiO2. J. Phys. Chem. Solids 68, 600 2007CrossRefGoogle Scholar