Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T04:52:08.074Z Has data issue: false hasContentIssue false

Phase diagram study of the Si–P system in Si-rich region

Published online by Cambridge University Press:  07 June 2011

Jafar Safarian*
Affiliation:
Norwegian University of Science and Technology, 7491 Trondheim, Norway
Merete Tangstad*
Affiliation:
Norwegian University of Science and Technology, 7491 Trondheim, Norway
*
a)Address all correspondence to these authors. e-mail: Jafar.Safarian@material.ntnu.no
Get access

Abstract

The Si–P system at high temperatures up to 6 wt%P was investigated. Silicon–phosphorus alloys were prepared through the melting of silicon–phosphorus mixtures in closed silica tubes. Microstructural studies indicated two phases in the alloys, i.e., a solid solution of P in Si and the intermediate compound SiP. Thermal analysis technique was applied to study the phase transformations in the alloys at elevated temperatures. It was observed that SiP is melted at 1139 ± 2 °C. A eutectic reaction in the system, in which liquid Si–P alloy is transformed to SiP and a solid solution of P in Si was observed at 1129 ± 2 °C. Moreover, the liquidus and solidus on the silicon-rich part of the phase diagram were determined as:

Solidus: TS = −75.03 CP + 1414 (°C) 0.35 < CP < 1 wt%P

Liquidus: TL = −6.74 CP + 1414 (°C) CP < 6 wt%P

The distribution coefficient of P in Si was calculated as k0 = 0.09 using the obtained solidus and liquidus at low concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Giessen, V.B. and Vogel, R.: About the silicon-phosphorus system. Z. Metallkd. 50, 274 (1959).Google Scholar
2.Zaitsev, A.I., Shelkova, N.E., Kodentsov, A.A.: Thermodynamic properties and phase equilibria in the silicon-phosphorus system. J. Phase Equilib. 21(6), 528 (2000).Google Scholar
3.Olesinski, R.W., Kanani, N., and Abbaschian, G.J.: The phosphorus-silicon system. Bull. Alloy Phase Diagrams 6(2), 130 (1985).Google Scholar
4.Kooi, E.: Formation and composition of surface layers and solubility limits of phosphorus during diffusion in silicon. J. Electrochem. Soc. 111, 1383 (1964).CrossRefGoogle Scholar
5.Yoshida, M., Arai, E., Nakamura, H. and Terunuma, Y.: Excess vacancy generation mechanism at phosphorus diffusion into silicon. J. Appl. Phys. 45(4), 1498 (1974).Google Scholar
6.Tsai, J.C.C.: Shallow phosphorus diffusion profiles in silicon. Proc. IEEE 57(9), 1499 (1969).CrossRefGoogle Scholar
7.Abrikosov, N.K., Glazov, V.M., and Chen Yuan, L.: Individual and joint solubilities of aluminum and phosphorus in germanium and silicon. Russ. J. Inorg. Chem. 7, 429 (1962).Google Scholar
8.Trumbore, F.A.: Solid solubilities of impurity elements in germanium and silicon. Bell Syst. Tech. J. 39(1), 205 (1960).CrossRefGoogle Scholar
9.Tamura, M.: Dislocation networks in phosphorus-implanted silicon. Philos. Mag. 35(3), 663 (1977).Google Scholar
10.Uda, K. and Kamoshida, M.: Annealing characteristics of highly P+-ion-implanted silicon crystal—two-step anneal. J. Appl. Phys. 48(1), 18 (1977).Google Scholar
11.Solmi, S., Parisini, A., Angelucci, R., and Armigliato, A.: Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Phys. Rev. B 53, 7836 (1996).CrossRefGoogle Scholar
12.Fogarassy, E., Stuck, R., Muller, J.C., Grob, A., Grob, J.J. and Siffert, P.: Effects of laser irradiation on phosphorus diffused layers in silicon. J. Electron. Mater. 9(1), 197 (1980).CrossRefGoogle Scholar
13.Nobili, D.: Semiconductor silicon 1990, in Sixth International Symposium on Silicon Materials Science and Technology, edited by Huff, H.R., Barraclough, K.G., and Chikawa, J.-I. (1990 Meeting of the Electrochemical Society, Montreal, Canada), p. 550.Google Scholar
14.Joshi, M.L. and Dash, S.: Dislocation-induced deviation of phosphorus-diffusion profiles in silicon. IBM J. Res. Dev. 10, 446 (1966).CrossRefGoogle Scholar
15.Borisenko, V.E. and Yudin, S.G.: Steady-state solubility of substitutional impurities in silicon. Phys. Status Solidi A 101, 123 (1987).Google Scholar
16.Bentzen, A., Christensen, J.S., Svensson, B.G., and Holt, A.: Understanding phosphorus emitter diffusion in silicon solar cell processing, in Twenty-first European Photovoltaic Solar Energy Conference, edited by Poortmans, J., Ossenbrink, H., Dunlop, E., Helm, P., WIP-Renewable Energies (Dresden, Germany, 2006), pp. 13881391.Google Scholar
17.Mackintosh, I.M.: The diffusion of phosphorus in silicon. J. Electrochem. Soc. 109, 392 (1962).CrossRefGoogle Scholar
18.Itoh, K., Sasaki, Y., and Mitsuishi, T.: Thermal behaviour of B, P and As atoms in supersaturated Si produced by ion implantation and pulsed laser annealing. Jpn. J. Appl. Phys. 21, L245 (1982).Google Scholar
19.Schwettmann, F.N. and Kendall, D.L.: Carrier profile change for phosphorus-diffused layers on low-temperature heat treatment. Appl. Phys. Lett. 19, 218 (1971).CrossRefGoogle Scholar
20.Handbook of Chemistry and Physics, 57th ed. (Robert C. Weast, CRC Press, Cleveland, 1976), B-37.Google Scholar
21.Barin, I., Knacke, O., and Kubashevski, O.: Thermochemical Properties of Inorganic Substances (Springer Verlag, New York, 1977).CrossRefGoogle Scholar
22.Massalski, T.B.: Binary Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).Google Scholar
23.Brown, M.E.: Introduction to Thermal analysis Techniques and Applications, 2nd ed. (Kluwer Academic Publishers, 2004).Google Scholar
24.Hall, R.N.: Segregation of impurities during the growth of germanium and silicon crystals. J. Phys. Chem. 57, 836 (1953).CrossRefGoogle Scholar
25.James, J.A. and Richards, D.H.: Radiochemical analysis of silicon. Int. J. Electron. 3, 500 (1957).Google Scholar
26.Huff, H.R., Digges, T.G. Jr., and Cecil, O.B.: Distribution coefficient of boron and phosphorus in silicon. J. Appl. Phys. 42, 1235 (1971).Google Scholar
27.Davis, J.R. Jr., Rohatgi, A., Hopkins, R.H., Blais, P.D., Rai-Choudhury, P., Mccormick, J.R. and Mollenkopf, H.C.: Impurities in silicon solar cells. IEEE Trans. Electron Devices 27(4), 677 (1980).CrossRefGoogle Scholar