Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T21:52:28.487Z Has data issue: false hasContentIssue false

Phase Evolution During Sintering of Mullite/zirconia Composites Using Silica-coated Alumina Powders

Published online by Cambridge University Press:  31 January 2011

V. Yaroshenko
Affiliation:
Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
D. S. Wilkinson
Affiliation:
Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
Get access

Abstract

Mullite-based composites can be made by an in situ reaction process using silica-coated alumina (SCA) powder as a mullite precursor. In this paper we present the combined effects of zirconia and premullite seeds on the crystallization process and microstructure development. When zirconia is added without seeding, mullite formation proceeds through the formation of transient zircon. This phase provides a lower energy barrier for mullite nucleation and thus lowers the mullitization temperature. The presence of yttria as a stabilizer in zirconia reduces the activation energy for zircon formation and thus promotes the transient reaction. The addition of premullite seeds results in the nucleation of mullite from alumina and silica, and zircon does not form. At low seeding levels mullitization remains nucleation-controlled; however, once the seeding level exceeds 1–2%, this is no longer the case.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aksay, I.A., Dabbs, D.M., and Sarikaya, M., Am. Ceram. Soc. 74, 2343 (1991).CrossRefGoogle Scholar
2.Lee, W.E. and Rainforth, W.M., Ceramic Microstructures. Property Control by Processing (Chapman & Hall, London, United Kingdom, 1994).Google Scholar
3.Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by Somiya, S., Davis, R.F., and Pask, J.A. (American Ceramic Society, Westerville, OH, 1990).Google Scholar
4.Mullite Processing Structure and Properties (topical issue), J. Am. Ceram. Soc. 74, 2341 (1991).CrossRefGoogle Scholar
5.Mullite '94 (special issue), J. Eur. Ceram. Soc. 16, 99 (1996).CrossRefGoogle Scholar
6.Sacks, M.D. and Lee, H-W., in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by Somiya, S., Davis, R.F., and Pask, J.A. (American Ceramic Society, Westerville, OH, 1990), pp. 167207.Google Scholar
7.Sacks, M.D., Scheifele, G.W., Bozkurt, N., and Raghunathan, R., in Ceramic Powder Science IV, Ceramic Transaction Vol. 22, edited by Messing, G.L., Hirano, S.I., and Hausner, H.H. (American Ceramic Society, Westerville, OH, 1991), pp. 437455.Google Scholar
8.Sacks, M.D., Bozkurt, N., and Scheifele, G.W., J. Am. Ceram. Soc. 74, 2428 (1991).CrossRefGoogle Scholar
9.Sacks, M.D., Wang, K., Scheifele, G.W., and Bozkurt, N., J. Am. Ceram. Soc. 79, 571 (1996).CrossRefGoogle Scholar
10.Sacks, M.D., Lin, Y-J., Scheifele, G.W., Wang, K., and Bozkurt, N., J. Am. Ceram. Soc. 78, 2897 (1995).CrossRefGoogle Scholar
11.Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 74, 10, 2374 (1991).CrossRefGoogle Scholar
12.Huling, J.C. and Messing, G.L., in Better Ceramics Through Chemistry IV, edited by Zelinski, B.J.J, Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 515526.Google Scholar
13.Moya, J.S. and Osendi, M.I., J. Mater. Sci. 2909 (1984).CrossRefGoogle Scholar
14.Moya, J.S. and Osendi, M.I., J. Mater. Sci. Lett. 2, 559 (1983).CrossRefGoogle Scholar
15.Yaroshenko, V., Wilkinson, D.S., J. Am. Ceram. Soc. (2000, in press).Google Scholar
16.Wang, K., Sacks, M.D., J. Am. Ceram. Soc. 79, 12 (1996).CrossRefGoogle Scholar
17.Shyu, J.J. and Chen, Y.C., J. Mater. Res. 10, 63 (1995).CrossRefGoogle Scholar
18.Hong, S-H., Cermignani, W., and Messing, G.L., J. Eur. Ceram. Soc. 16, 133 (1996).CrossRefGoogle Scholar
19.Tartaj, P., Serna, C.J., Moya, J.S., Requena, J., Osana, M., De Asa, S., and Guitian, F., J. Mater. Sci. 31, 6089 (1996).CrossRefGoogle Scholar
20.Kissinger, H.E., J. Res. Natl. Bur. Stand. (U.S.) 50, 217 (1956).Google Scholar
21.Boch, P., Chartier, T., and Giry, J.P., in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by Somiya, S., Davis, R.F., and Pask, J.A. (American Ceramic Society, Westerville, OH, 1990), pp. 473494.Google Scholar
22.Claussen, N. and Jahn, J., J. Am. Ceram. Soc. 63, 228 (1980).Google Scholar
23.Cameron, W.E., Am. Ceram. Soc. Bull. 56, 1003 (1977).Google Scholar
24.Yoshimura, M., Hanaue, Y., and Somiya, S., in Mullite and Mullite Based Composites, Ceramic Transaction Vol. 6, edited by Somiya, S., Davis, R.F., and Pask, J.A. (American Ceramic Society, Westerville, OH, 1990), pp. 449456.Google Scholar
25.Lathabai, S., Hay, D.G., Wagner, F., and Claussen, N., J. Am. Ceram. Soc. 79, 248 (1996).CrossRefGoogle Scholar
26.Wallace, J.S., Petzow, G., and Claussen, N., in Science and Technology of Zirconia, Advances in Ceramics Vol. 12, edited by Claussen, N., Ruhle, M., and Heuer, A.H. (American Ceramic Society, Westerville, OH, 1984), pp. 436442.Google Scholar
27.Koyama, T., Hayashi, S., Yasumori, A., Okada, K., Schmucker, M., and Schneider, H., J. Eur. Ceram. Soc. 16, 231 (1996).CrossRefGoogle Scholar