Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:55:26.206Z Has data issue: false hasContentIssue false

Phase Relations and Microwave Dielectric Properties of ZnNb2O6–TiO2

Published online by Cambridge University Press:  31 January 2011

Dong-Wan Kim
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea
Deok-Yang Kim
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea
Kug Sun Hong*
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea
*
a)Address all correspondence to this author.
Get access

Abstract

The phase relations and microwave dielectric properties of (1−x)ZnNb2O6xTiO2 were investigated using x-ray powder diffraction and a network analyzer. Four phase regions were studied with increasing TiO2 mol% (x): columbite solid solution, ixiolite (ZnTiNb2O8) solid solution, mixture of ixiolite and rutile solid solutions, and rutile solid solution. It was suggested that the microwave properties depend on crystal structure rather than chemical composition. In the columbite solid solution region, an order–disorder transition was found with an increasing amount of TiO2, and the quality factor decreased sharply. ZnTiNb2O8 (x = 0.5), has a fully disordered structure and possesses a quality factor of 42,500, relative dielectric constant (εr) of 34.3, and temperature coefficient of resonant frequency (τf) of −52 ppm/°C. In the mixture region of ixiolite and rutile structure, τf was modified to around 0 ppm/°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goldschmidt, H.J., Metallurgia 88, 241 (1960).Google Scholar
2.Weitzel, H., Z. Kristallogr. 144, 238 (1976).CrossRefGoogle Scholar
3.Laves, F., Bayer, G., and Panagos, A., Schweiz. Mineral. Petrogr. Mitt. 43, 217 (1963).Google Scholar
4.Wenger, M. and Armbruster, T., N. Jb. Miner. Mh. H. 5, 224 (1993).Google Scholar
5.Baumgarte, A. and Blachnik, R., J. Alloys Compd. 215, 117 (1994).CrossRefGoogle Scholar
6.Simons, P.Y. and Dachille, F., Acta. Crystallogr. 23, 334 (1967).CrossRefGoogle Scholar
7.Magneli, A. and Marinder, B.O., Arkiv Kemi. 21, 407 (1963).Google Scholar
8.Nickel, E.H., Rowland, J.F., and McAdam, R.C., Am. Mineral. 48, 961 (1963).Google Scholar
9.Baumgarte, A. and Blacknik, R., Mat. Res. Bull. 27, 1287 (1992).CrossRefGoogle Scholar
10.Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Mat. Res. Bull. 32(7), 847 (1997).CrossRefGoogle Scholar
11.Lee, H.J., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 36, 1318 (1997).CrossRefGoogle Scholar
12.Cohn, S.B., IEEE Trans. Microwave Theory & Tech. 16, 218 (1968).CrossRefGoogle Scholar
13.Tarou, M., Electron. Ceram. 24, 38 (1993).Google Scholar
14.Hakki, B.W. and Coleman, P.D., IRE Trans. Microwave Theory & Technol. 8, 402 (1960).CrossRefGoogle Scholar
15.Ginzton, E.L., in Microwave Measurements, edited by Schiff, L.I. (McGraw-Hill, New York, 1957).Google Scholar
16.Sagala, D.A., Nambu, S., and Echeverria, M., J. Am. Ceram. Soc. 75, 2573 (1992).CrossRefGoogle Scholar
17.Guo, R., Bhalla, A.S., and Cross, L.E., J. Appl. Phys. 75, 4704 (1994).CrossRefGoogle Scholar
18.Kim, I.T., Kim, Y.H., and Chung, S.J., Jpn. J. Appl. Phys. 34, 4096 (1995).CrossRefGoogle Scholar
19.Cho, S.Y., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 37, 593 (1998).CrossRefGoogle Scholar
20.Wakino, K. and Tamura, H., Ceram. Trans. 8, 305 (1990).Google Scholar
21.Lee, H.J., Hong, K.S., and Kim, I.T., J. Mater. Res. 12, 1437 (1997).CrossRefGoogle Scholar
22.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
23.Shannon, R.D., Husson, E., Repelin, Y., Dao, N.Q., and Brusset, H., Mat. Res. Bull. 12, 1129 (1977).CrossRefGoogle Scholar
24.Grice, J.D., Ferguson, R.B., and Hawthorne, F.C., Can. Mineral. 14, 540 (1976).Google Scholar