Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T06:49:39.575Z Has data issue: false hasContentIssue false

Phase separation during co-deposition of Al–Ge thin films

Published online by Cambridge University Press:  31 January 2011

C.D. Adams
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
M. Atzmon
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
Y-T. Cheng
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
D.J. Srolovitz
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
Get access

Abstract

We present the results of a combined experimental and theoretical investigation of phase separation and microstructure development in co-deposited Al–Ge thin films. For small film thicknesses and deposition temperatures above 150 °C the phase-separated films consist of an array of domains of the Al- and Ge-rich terminal phases (lateral phase separation). Films deposited at 100 °C or less contained one or both of the terminal phases plus a metastable phase. We show that the domain structure evolves during deposition in a manner consistent with a surface interdiffusion controlled process. As film thickness increases we observe a transition from the laterally phase-separated microstructure to a layered microstructure exhibiting phase separation perpendicular to the film/substrate interface (transverse phase separation), with Al segregating to the film surface. We present a thermodynamic argument based on the competition between surface and interfacial free energies to explain this transition. Finally, we discuss the stability of the transverse phase-separated microstructure in the thick-film limit in terms of the transport of Ge through the Al-rich surface layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Movchan, B. A. and Demchishin, A. V., Phys. Met. Metallogr. 28, 83 (1969).Google Scholar
2.Cantor, B. and Cahn, R. W., Acta Metall. 24, 845 (1976).CrossRefGoogle Scholar
3.Deutscher, G., Rappaport, M., and Ovadyahu, Z., Solid State Commun. 28, 593 (1978).CrossRefGoogle Scholar
4.Saunders, N. and Miodownik, A. P., J. Mater. Sci. 22, 629 (1987).CrossRefGoogle Scholar
5.Barber, Z.H., Vacuum 41, 1102 (1990).CrossRefGoogle Scholar
6.Dirks, A. G., van den Broek, J. J., and Wierenga, P. E., J. Appl. Phys. 55, 4248(1984).CrossRefGoogle Scholar
7.Liou, S. H. and Chien, C. L., J. Appl. Phys. 63, 4240 (1988).CrossRefGoogle Scholar
8.Mahajan, S. and Shahid, M. A., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D.K., Eastman, L. E., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989).Google Scholar
9.Cahn, R. W. and Haasen, P., Physical Metallurgy (North-Holland, Amsterdam, 1983).Google Scholar
10.Cahn, J.W., Acta Metall. 7, 18 (1959).CrossRefGoogle Scholar
11.Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM, Metals Park, OH, 1986), p. 116.Google Scholar
12.Laridjani, M. and Cahn, R. W., Mater. Sci. Eng. 23, 125 (1976).CrossRefGoogle Scholar
13.Köster, U., Z. Metallk. 63, 472 (1972).Google Scholar
14.Vollin, T. E. and Balluffi, R. W., Phys. Status Solidi 25, 163 (1968).CrossRefGoogle Scholar
15.Peterson, N.L.and Rothman, S.J., Phys. Rev. B 1, 3264 (1970).CrossRefGoogle Scholar
16.Widmer, H. and Günther-Mohr, G. R., Helv. Phys. Acta 34, 635 (1961).Google Scholar
17.Letaw, H., Slifkin, L., and Portnoy, W.M., Phys. Rev. 102, 636 (1956).CrossRefGoogle Scholar
18.Meer, W. and Pommerrenig, D., Z. Angew. Phys. 23, 369 (1967).Google Scholar
19.Pines, B. Ya and Zyman, Z.Z., Fiz. Metal. Metalloved 25, 840 (1968).Google Scholar
20.Atzmon, M., Kessler, D. A., and Srolovitz, D. J. (to be published).Google Scholar
21.Kessler, D. A. and Levine, H., Phys. Rev. A 39, 3041 (1989).CrossRefGoogle Scholar
22.Dombre, T. and Hakim, V., Phys. Rev. A 36, 2811 (1987).CrossRefGoogle Scholar
23.Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).CrossRefGoogle Scholar
24.Adams, C. D., Atzmon, M., Cheng, Y-T., and Srolovitz, D. J., Appl. Phys. Lett. 59 (20), 2535 (1991).CrossRefGoogle Scholar