Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:12:02.975Z Has data issue: false hasContentIssue false

Phase separation in SiO2–TiO2 gel and glassy films studied by atomic force microscopy and transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

A. Karthikeyan
Affiliation:
Departamento de Engenharia de Materiais/INESC, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
Rui M. Almeida*
Affiliation:
Departamento de Engenharia de Materiais/INESC, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
*
a)Address all correspondence to this author. e-mial: rui.almeida@inesc.pt
Get access

Abstract

An investigation of phase separation phenomena in gel and glassy thin films of silica–titania, with TiO2 contents of 20 and 40 mol%, has been carried out by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The thin films were prepared by spin coating of a precursor sol on silicon wafers. Both the TEM measurements (carried out on scrapped thin film flakes) and the AFM measurements (carried out on films coated on the silicon substrates) for samples with different heat treatments suggest that spinodal-like structural inhomogeneities occur in these samples, unlike the corresponding observations in pure silica films, which are known to be homogeneous. Changes in the microstructure of the films have been noticed with the thermal treatment, in agreement with earlier x-ray photoemission studies. The finer characteristic dimensions of the phase separated regions reveal that silica–titania samples prepared by sol-gel processing exhibit a more intimate mixing of the phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schultz, P.C., J. Am. Ceram. Soc. 58, 214 (1976).CrossRefGoogle Scholar
2.Gerlic, D., Wolf, M., Yaacov, I., and Nissenson, B., J. Non-Cryst. Solids 21, 243 (1976).CrossRefGoogle Scholar
3.Lukosc, W. and Tiefenhaler, K.T., Opt. Lett. 8, 537 (1983).Google Scholar
4.Barbier, D., Orignac, X., Du, X.M., and Almeida, R.M., 8th Cimtec (World Ceramic Congress Proc., Florence, Italy, June 1994).Google Scholar
5.Kamiya, K., Sakka, S., and Yamanaka, I., Proc. Xth Int. Congr. Glass, Kyoto, Japan 13, 44 (1974).Google Scholar
6.Du, X.M. and Almeida, R.M., J. Mater. Res. 11, 353 (1996).Google Scholar
7.Gonzalez-Oliver, C.J.R., James, P.F., and Rawson, H., J. Non-Cryst. Solids 48, 129 (1982).Google Scholar
8.DeVries, R.C., Roy, R., and Osborn, E.F., Trans. Br. Ceram. Soc. 53, 533 (1954).Google Scholar
9.Galakhov, F.Y., Areshev, M.P., Vavilonova, V.T., and Aver’yanov, V.I., Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 179 (1974).Google Scholar
10.Labarbe, P.D., Lin, J.S., and Wright, A.F., Phys. Chem. Glasses 29, 91 (1988).Google Scholar
11.Almeida, R.M., Vasconcelos, H.C., and Ilharco, L.M., Proc. SPIE 2288, 678 (1994).CrossRefGoogle Scholar
12.Orignac, X., Vasconcelos, H.C., and Almeida, R.M., J. Non-Cryst. Solids 217, 155 (1997).CrossRefGoogle Scholar
13.Strohhöfer, C., Fick, J., Vasconcelos, H.C., and Almeida, R.M., J. Non-Cryst. Solids 226, 182 (1998).Google Scholar
14.Almeida, R.M., Du, X.M., Orignac, X., and Barbier, D., J. Sol-Gel Sci. Technol. 14, 209 (1999).CrossRefGoogle Scholar
15.Orignac, X., Barbier, D., McCarthy, O., Yeatman, E., and Almeida, R.M., Opt. Mater. 12, 1 (1999).Google Scholar
16.Almeida, R.M., J. Non-Cryst. Solids 259, 176 (1999).Google Scholar
17.Kathikeyan, A. and Almeida, R.M., J. Non-Cryst. Solids 274, 169 (2000).Google Scholar