Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T21:55:35.643Z Has data issue: false hasContentIssue false

Phase Stability, Phase Transformations, and Elastic Properties of Cu6Sn5: Ab initio Calculations and Experimental Results

Published online by Cambridge University Press:  03 March 2011

G. Ghosh
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
M. Asta
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
Get access

Abstract

Among many Sn-based intermetallics, Cu6Sn5 (η and η′) is ubiquitous in modern solder interconnects. Using the published structural models of η and η′ and also related structures, the total energies and equilibrium cohesive properties are calculated from first-principles employing electronic density-functional theory, ultrasoft pseudopotentials, and both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. The accuracy of our calculations is assessed through comparisons between theoretical results and experimental measurements for lattice parameters, elastic properties, and formation and transformation energies. The ambient-temperature experimental lattice constants of η and η′ are found to lie between the LDA and GGA level calculated zero-temperature lattice constants. The Wyckoff positions in the structural models of η and η′ agree very well with the ab initio results. The calculated formation energy of η′ lies between −3.2 and −4.0 kJ/mol, which is more positive by about 3 to 4 kJ/mol compared to reported experimental data obtained by solution calorimetry. Our systematic differential scanning calorimetry (DSC) experiments show that the η′ → η transformation enthalpy is 438 ± 18 J/mol, which is about 66% higher than the literature value. In view of our DSC results on heating and cooling, the nature of η′ → η and η → η′ is discussed. Our experimental bulk modulus of η and η′, and the heat of η′ → η transformation agree very well with the ab initio total energy calculations at the GGA level. Based on these results, we conclude that other isotropic elastic moduli (Young’s modulus, shear, and Poissons ratio) of η and η′ phases measured by pulse-echo technique are representative of their actual properties. The scatter in experimental elastic constants in the literature may be attributed to various factors, such as the measurement technique (pulse-echo versus nanoindentation), type of specimen (bulk, Cu6Sn5-layer in diffusion couple, thin-film), and anisotropy effects (particularly in Cu6Sn5-layer in diffusion couples).

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tu, K.N. and Zeng, K.: Tin-Lead (SnPb) solder reaction in flip chop technology. Mater. Sci. Eng. R34 (2001).CrossRefGoogle Scholar
2Gangulee, A., Das, G.C. and Bever, M.B.: An x-ray diffraction and calorimetric investigation of the compound Cu6Sn5. Metall. Trans. 4, 2063 (1973).CrossRefGoogle Scholar
3Shim, J-H., Oh, C-S., Lee, B-J. and Lee, D.N.: Thermodynamic assessment of the Cu-Sn system. Z. Metallkde. 87, 205 (1996).Google Scholar
4Moon, K.W., Boettinger, W.J., Kattner, U.R., Biancaniello, F.S. and Handwerker, C.A.: Experimental and Thermodynamic assessment of the Sn-Ag-Cu system. J. Electron. Mater. 29, 1122 (2000).CrossRefGoogle Scholar
5Liu, X.J., Wang, C.P., Ohnuma, I., Kainuma, R. and Ishida, K.: Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems. Metall. Mater. Trans A 35A, 1641 (2004).CrossRefGoogle Scholar
6Kepler, L.D., Vaughey, J.T. and Thackeray, M.M.: LixCu6Sn5 (0 < x < 13): An intermediate insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 2, 307 (1999).CrossRefGoogle Scholar
7Larcher, D., Beaulieu, L.Y., MacNeil, D.D. and Dahn, J.R.: In situ x-ray study of the electrochemical reaction of Li with η′–Cu6Sn5. J. Electrochem. Soc. 147, 1658 (2000).CrossRefGoogle Scholar
8Thackeray, M.M., Vaughey, J.T. and Fransson, L.M.L.: Recent developments in anode materials for lithium batteries. J. Metals 54(3), 20 (2002).Google Scholar
9Puttlitz, K.: Preparation, structure, and fracture modes of Pb–Sn and Pb–In terminated flip-chips attached to gold capped microsockets. IEEE Trans CHMT 13, 647 (1990).Google Scholar
10Pratt, R.E., Stromswold, E.I. and Quesnel, D.J.: Mode-I fracture-toughness testing of eutectic Sn-Pb solder joints. J. Electron. Mater. 23, 375 (1994).CrossRefGoogle Scholar
11Frear, D. and Vianco, P.T.: Intermetallic growth and mechanical-behavior of low and high-melting temperature solder alloys. Metall. Trans. A 25A, 1509 (1994).CrossRefGoogle Scholar
12Yao, D. and Shang, J.K.: Effect of aging on fatigue-crack growth at Sn-Pb/Cu interfaces. Metall. Trans. A 26A, 2677 (1995).CrossRefGoogle Scholar
13Subrahmanyan, B.: Elastic-moduli of some complicated binary alloy systems. Trans. Jpn. Inst. Met. 130, 93 (1972).CrossRefGoogle Scholar
14Cabarat, R., Guillet, L. and LeRoux, R.: The elastic properties of metallic alloys. J. Inst. Met. 75, 391 (1975).Google Scholar
15Fields, R.J., III, S.R. Low, Lucey, G.K. Jr.: In The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E., (TMS, Warrendale, PA, 1992), pp. 165173.Google Scholar
16Ghosh, G.: Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19, 1439 (2004).CrossRefGoogle Scholar
17Lucas, J.P., Rhee, H., Guo, F. and Subramanian, K.N.: Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation. J. Electron. Mater. 32, 1375 (2003).CrossRefGoogle Scholar
18Chromik, R.R., Vinci, R.P., Allen, S.L. and Notis, M.R.: Nanoindentation measurements on Cu-Sn and Ag-Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18, 2251 (2003).CrossRefGoogle Scholar
19Deng, X., Koopman, M., Chawla, N. and Chawla, K.K.: Young’s modulus of (Cu, Ag) Sn intermetallics measured by nanoindentation. Mater. Sci. Eng. A364, 240 (2004).CrossRefGoogle Scholar
20Ostrovskaya, L.M., Rodin, V.N. and Kuznetsov, A.I.: Elastic properties of intermetallic compounds produced by vacuum deposition. Sov. J. Non-Ferrous Met. 26(3), 90 (1985).Google Scholar
21Westgren, A. and Phragmen, G.: X-ray analysis of copper-tin alloys. Z. Anorg. Chem. 175, 80 (1928).CrossRefGoogle Scholar
22Rose, D.: New data for stistaite and antimony-bearing η-Cu6Sn5 from Rio Tammana, Colombia. Neues Jb. Miner. Monat. 3, 117 (1981).Google Scholar
23Larsson, A.K., Stenberg, L. and Lidin, S.: Crystal structure modulation in η–Cu5Sn4. Z. Kristallogr. 210, 832 (1995).CrossRefGoogle Scholar
24Bernal, J.D.: The complex structure of the copper-tin intermetallic compound. Nature 122, 54 (1928).CrossRefGoogle Scholar
25Carlsson, O. and Hägg, G.: On the knowledge of crystal structures of some copper-tin phases. Z. Kristallogr. 83, 308 (1932).CrossRefGoogle Scholar
26Larsson, A.K., Stenberg, L. and Lidin, S.: The superstructure of domain-twinned η′–Cu6Sn5. Acta Crystallogr. B50, 636 (1994).CrossRefGoogle Scholar
27Hyde, B.G. and Andersson, S.: Inorganic Crystal Structures (Wiley and Sons, New York, 1989).Google Scholar
28Lidin, S. and Larsson, A.K.: A survey of superstructures in intermetallic NiAs-Ni2In-type phases. J. Solid State Chem. 118, 313 (1995).CrossRefGoogle Scholar
29Lidin, S.: Superstructure ordering of intermetallics: B8 structures in the pseudo-cubic regime. Acta Crystallogr. B54, 97 (1998).CrossRefGoogle Scholar
30Kresse, G. and Furthmuller, J.: Efficient iterative schemes of ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
31Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semi-conductors using a plane-wave basis set. Comp. Mater Sci. 6(1996).CrossRefGoogle Scholar
32Vanderbilt, D.: Soft self-consistent pseudo potential in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
33Ceperley, D.M. and Alder, B.J.: Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
34Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximation for many-electron systems. Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
35Perdew, J.P. and Wang, Y.: Accuarte and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
36Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976).CrossRefGoogle Scholar
37Methfessel, M. and Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).CrossRefGoogle ScholarPubMed
38Vinet, P., Rose, J.H., Ferrante, J. and Smith, J.R.: Universal feature of the equation of state solids. J. Phys: Condens Matter 1, 1941 (1989).Google Scholar
39Murnaghan, F.D.: The compressibility of media under extreme pressures. Prop. Acad. Sci. USA 50, 244 (1944).CrossRefGoogle Scholar
40Birch, F.: Elasticity and constitution of the earth. J. Geophys. Res. 57, 227 (1952).CrossRefGoogle Scholar
41Green, R.E. Jr.: In Nondestructive Testing Handbook: Ultrasonic Testing, Vol. 7, edited by McIntire, P. (American Society for Non-destructive Testing, 1992), pp. 122.Google Scholar
42Henneke, E.H.: In Nondestructive Testing Handbook: Ultrasonic Testing, Vol. 7, edited by McIntire, P. (American Society for Non-destructive Testing, 1991), pp. 3364.Google Scholar
43Levy, M., Baas, H.E. and Stern, R.R.: Handbook of Elastic Properties of Solids, Liquids and Gases (Academic Press, San Diego, CA, 2001).Google Scholar
44Kaufman, L. and Bernstein, H.: Computer Calculation of Phase Diagram (Academic Press, Inc., New York, 1970).Google Scholar
45Christensen, N.E. and Methfessel, M.: Density-functional calculations of the structural properties of tin under pressure. Phys. Rev. B 48, 57975807(1993).CrossRefGoogle ScholarPubMed
46Aguado, A.: First-principles study of elastic properties and pressureinduced phase transitions of Sn: LDA vs GGA results. Phys. Rev. B 67, 212104 (2003).CrossRefGoogle Scholar
47Straumanis, M.E. and Yu, L.S.: Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Crystall. A 25A, 676 (1969).CrossRefGoogle Scholar
48Kamtola, M. and Tokola, E.: X-ray studies on the thermal expansion of copper-nickel alloys. Physica 223A, 1 (1967).Google Scholar
49Gaffney, W.C. Overton Jr.and J.: Temperature variation of the elastic constants of cubic elements. I. Copper. Phys. Rev. 98, 969 (1955).Google Scholar
50Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The MIT Press, Cambridge, MA, 2001), p. 179.Google Scholar
51Steinberg, D.J.: Some observations regarding the pressure dependence of the bulk modulus. J. Phys. Chem. Solids 43, 1173 (1982).CrossRefGoogle Scholar
52Thewlis, J. and Davey, A.R.: Thermal expansion of grey tin. Nature 174, 1011 (1954).CrossRefGoogle Scholar
53Price, D.L. and Rowe, J.M.: The crystal dynamics of grey (α) tin at 90°K. Solid State Commun. 7, 1433 (1969).CrossRefGoogle Scholar
54Buchenauer, C.J., Cardona, M. and Pollak, F.H.: Raman scattering in grey tin. Phys. Rev. B 3, 1243 (1971).CrossRefGoogle Scholar
55Lee, J.A. and Raynor, G.V.: The lattice spacing of binary tin-rich alloys. Proc. Phys. Soc., London 67B, 737 (1954).CrossRefGoogle Scholar
56Wolcyrz, M., Kubiak, R. and Maciejewski, S.: X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. Phys. Status Solidi 107B, 245 (1981).CrossRefGoogle Scholar
57Rayne, J.A. and Chandrasekhar, B.S.: Elastic constants of β tin from 4.2° K to 300° K. Phys. Rev. 120, 1658 (1960).CrossRefGoogle Scholar
58Cheong, B.H. and Chang, K.J.: First-principles study of the structural properties of Sn under pressure. Phys. Rev. B 44, 4103 (1991).CrossRefGoogle ScholarPubMed
59Jona, F. and Marcus, P.M.: Structural properties of Cu. Phys. Rev. B 63, 094113 (2001).CrossRefGoogle Scholar
60Wang, L.G. and Šob, M.: Structural stability of higher-energy phases and its relation to the atomic configuration of extended defects: The example of Cu. Phys. Rev. B 60, 844 (1999).CrossRefGoogle Scholar
61Pavone, P., Baroni, S. and de Gironcoli, S.: α ↔ β transition in tin: A theoretical study of density functional perturbation theory. Phys. Rev. B 57, 10421 (1998).CrossRefGoogle Scholar
62Dinsdale, A.: SGTE data for pure elements. Calphad 15, 317 (1991).CrossRefGoogle Scholar
63Andersson, J.O., Helander, T., Höglund, L., Shi, P.F. and Sundman, B.: Thermo-calc and DICTRA, computational tools for materials science. Calphad 26, 273 (2002).CrossRefGoogle Scholar
64Wang, Y., Curtarolo, S., Jiang, C., Arroyave, R., Wang, T., Ceder, G., Chen, L-Q. and Liu, Z-K.: Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28, 79 (2004).CrossRefGoogle Scholar
65Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
66Wolverton, C. and Ozolins, V.: Entropically favored ordering: The metallurgy of Al2Cu revisited. Phys. Rev. Lett. 86, 5518 (2001).CrossRefGoogle ScholarPubMed
67Ishihara, T.: On the equilibrium diagram of the copper-tin system. J. Inst. Metals 31, 315 (1924).Google Scholar
68Hamasumi, M.: The equilibrium diagram of copper-tin alloys. Kinzoku no kenkyo 10, 137 (1933).Google Scholar
69Haughton, J.L.: The constitution of the alloys of copper with tin: Parts III and IV. J. Inst. Metals 25, 309 (1921).Google Scholar
70Raynor, G.V.: In Annoted Equilibrium Diagram Series, No. 2 (The Institute of Metals, London, U.K., 1944).Google Scholar
71Saunders, N. and Miodownik, A.P.: The Cu–Sn (copper–tin) system. Bull. Alloy Phase Diagrams 11, 278 (1990).CrossRefGoogle Scholar
72Landau, L.D. and Lifschitz, E.M.: Statistical Physics (Pergamon Press, Oxford, U.K., 1976).Google Scholar
73Izyumov, Yu.A. and Syromyatnikov, V.N.: Phase Transitions and Crystal Symmetry (Kluwer, Dordrecht, The Netherlands, 1990).CrossRefGoogle Scholar
75Prakash, K. and Sritharan, T.: Interface reaction between copper and molten tin-lead solders. Acta Mater. 49, 2481 (2001).CrossRefGoogle Scholar
76Prakash, K. and Sritharan, T.: Textured growth of Cu/Sn intermetallic compounds. J. Electronic Mater. 31, 1250 (2002).CrossRefGoogle Scholar