Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T22:14:53.505Z Has data issue: false hasContentIssue false

Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation

Published online by Cambridge University Press:  31 January 2011

Hengzhong Zhang
Affiliation:
Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 W. Dayton Street, Madison, Wisconsin 53706
Jillian F. Banfield
Affiliation:
Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 W. Dayton Street, Madison, Wisconsin 53706
Get access

Abstract

The kinetics of phase transformation of nanocrystalline anatase samples was studied using x-ray diffraction at temperatures ranging from 600 to 1150 °C. Kinetic data were analyzed with an interface nucleation model and a newly proposed kinetic model for combined interface and surface nucleation. Results revealed that the activation energy of nucleation is size dependent. In anatase samples with denser particle packing, rutile nucleates primarily at interfaces between contacting anatase particles. In anatase samples with less dense particle packing, rutile nucleates at both interfaces and free surfaces of anatase particles. The predominant nucleation mode may change from interface nucleation at low temperatures to surface nucleation at intermediate temperatures and to bulk nucleation at very high temperatures. Alumina particles dispersed among the anatase particles can effectively reduce the probability of interface nucleation at all temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Czanderna, A.W., Rao, C.N.R, and Honig, J.M., Trans. Faraday Soc. 54, 1069 (1958).CrossRefGoogle Scholar
2.Rao, C.N.R, Can. J. Chem. 39, 498 (1961).CrossRefGoogle Scholar
3.Suzuki, A. and Kotera, Y., Bull. Chem. Soc. Jpn. 35, 1353 (1962).CrossRefGoogle Scholar
4.Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
5.Suzuki, A. and Tukuda, R., Bull. Chem. Soc. Jpn. 42, 1853 (1969).CrossRefGoogle Scholar
6.Heald, E.F. and Weiss, C.W., Am. Mineral. 57, 10 (1972).Google Scholar
7.MacKenzie, K.J.D, Trans. J. Br. Ceram. Soc. 74, 77 (1975).Google Scholar
8.Hishita, S., Mutoh, I., Koumoto, K., and Yanagida, H., Ceram. Int. 9, 41 (1983).CrossRefGoogle Scholar
9.Kumar, K.N.P, Keizer, K., and Burggraaf, A.J., J. Mater. Chem. 3, 1141 (1993).CrossRefGoogle Scholar
10.Banfield, J.F., Bischoff, B.L., and Anderson, M.A., Chem. Geol. 110, 211 (1993).CrossRefGoogle Scholar
11.Gribb, A.A. and Banfield, J.F., Am. Mineral. 82, 717 (1997).CrossRefGoogle Scholar
12.Gennari, F.C. and Pasquevich, D.M., J. Mater. Sci. 33, 1571 (1998).CrossRefGoogle Scholar
13.Amores, J.M.G, Escribano, V.S., and Busca, G., J. Mater. Chem. 5, 1245 (1995).CrossRefGoogle Scholar
14.Ding, X.Z. and Liu, X.H., J. Mater. Res. 13, 2556 (1998).CrossRefGoogle Scholar
15.Zhang, H. and Banfield, J.F., Am. Mineral. 84, 528 (1999).CrossRefGoogle Scholar
16.Shannon, R.D. and Pask, J.A., Am. Mineral. 49, 1707 (1964).Google Scholar
17.Jenkins, R. and Snyder, R.L., Introduction to X-ray Powder Diffractometry (John Wiley & Sons, New York, 1996), p. 90.CrossRefGoogle Scholar
18.Penn, R.L. and Banfield, J.F., Am. Mineral. 84, 871 (1999).CrossRefGoogle Scholar
19.Haro-Poniatowski, E., Rodriguez-Talavera, R., De La Cruz Heredia, M., Cano-Corona, O., and Arroyo-Murillo, R., J. Mater. Res. 9, 2102 (1994).CrossRefGoogle Scholar
20.Penn, R.L. and Banfield, J.F., Science 281, 969 (1998).CrossRefGoogle Scholar
21.Tanaka, K., Iwama, S., and Mihama, K., Jpn. J. Appl. Phys. 37, L669 (1998).CrossRefGoogle Scholar
22.Nair, P., Mizukami, F., Okubo, T., Nair, J., Keizer, K., and Burggraaf, A.J., Ceram. Processing 43, 2710 (1997).Google Scholar
23.Blakely, J.M., Introduction to the Properties of Crystal Surfaces (Pergamon Press, Oxford, United Kingdom, 1973), pp. 710, 24–30.Google Scholar