Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:43:35.599Z Has data issue: false hasContentIssue false

Phases and crystallization in the system Li2O–B2O3–H2O under hydrothermal conditions

Published online by Cambridge University Press:  31 January 2011

K. Byrappa
Affiliation:
The Mineralogical Institute, University of Mysore, Manasagangotri, Mysore-570 006, India
K.V.K. Shekar
Affiliation:
The Mineralogical Institute, University of Mysore, Manasagangotri, Mysore-570 006, India
Get access

Abstract

The Li2O–B2O3–H2O system has been studied under hydrothermal conditions (T = 250 °C, P < 100 bars). The phases crystallizing in this system are Li4B7O12Cl, Li2B4O7, Li3B5O8(OH)2, LiH2B5O9, and Li2HBO3. Some of these phases are new ones. Their fields of crystallization are shown in the composition diagram. The growth and characterization of these lithium borates obtained in the system Li2O–B2O3–H2O under lower PT conditions have been discussed in brief.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lutz, F. and Leiss, M., Recent Nd-miniature Lasers, Abstract Book, C57 ECCG-2 (Laucaster, U.K., Sept. 10-15, 1979).Google Scholar
2Konig, V. H. and Hoppe, R., Z. Anorg. Allg. Chem. 439; 71 (1978).CrossRefGoogle Scholar
3Whatmore, R.W., Shorrocks, N.M., O'Hara, C., and Ainger, F. W., Electron. Lett. 17, 11 (1981).CrossRefGoogle Scholar
4Sastry, B.S.R. and Hummel, F.A., J. Am. Ceram. Soc. 41, 7 (1958).CrossRefGoogle Scholar
5Sokolova, E. V., Ph.D. Thesis, Moscow State University, Moscow (1980) (in Russian).Google Scholar
6Belov, N. V., Ivascheuko, A. I., Bonderava, O. S., Lobachev, A. N., Malinovskii, Yu. A., Melnikov, O. K., and Simonov, M. A., in Hydrothermal Synthesis and Growth of Single Crystals, edited by Lobachev, A.N. (Nauka, Moscow, 1982), p. 158.Google Scholar
7Yakubovich, O.V., Ph.D. Thesis, Moscow State University, Moscow (1978) (in Russian).Google Scholar
8Bondareva, O.S., Egorov-Tismenko, Y. K., Simonov, M.A., and Belov, N.V., Sov. Phys. Dokl. 23 (11), 806 (1978).Google Scholar
9Terol, S. and Otero, M. J.de le Gaudaka, Z. Naturforsch. 16A, 920 (1961).CrossRefGoogle Scholar
10Dewerd, L.A., Mater. Res. Bull. XI, 1413 (1976).CrossRefGoogle Scholar
11Takanaga, M., Nucl. Instrum. Methods 175, 77 (1980).Google Scholar
12Byrappa, K. and Srikantaswamy, S., Progress in Crystal Growth and Characterization of Materials 21, 119 (1990).Google Scholar
13Melnikov, O.K., Bondareva, O.S., and Malinovskii, Y.A., 1st Int. Symp. Hydrothermal Reacts., Tokyo, Japan (1982).Google Scholar
14Byrappa, K. and Shekar, K. V. K., Cryst. Res. Tech. 27, 767 (1992).CrossRefGoogle Scholar
15Bondareva, O.S., Egorov-Tismenko, Yu.K., Simonov, M.A., and Belov, N.V., Sov. Phys. Dokl. 23 (11), 806 (1978).Google Scholar
16Byrappa, K. and Shekar, K.V. K., Indian J. Phys. 66A (3), 263 (1992).Google Scholar
17Reau, J. M., Levasseur, A., Maniez, G., Cales, B., Fouassier, C., and Hagenmuller, P., Mater. Res. Bull. XI, 1087 (1976).CrossRefGoogle Scholar
18Jeitschko, W. and Bither, T.A., Z. Naturaf. 27B, 1423 (1972).CrossRefGoogle Scholar
19Sheldrick, G. M., SHELX computer program, Acta Crystallogr. A 46, 467 (1990).CrossRefGoogle Scholar
20Sheldrick, G. M., SHELX76, Program for crystal structure determination, University of Cambridge, England.Google Scholar
21Hodge, J. M., Ingram, M. D., and West, A. R., J. Electroanal. Chem. 74, 125 (1976).CrossRefGoogle Scholar