Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T04:34:18.107Z Has data issue: false hasContentIssue false

Phase-transformation kinetics in triphasic cordierite gel

Published online by Cambridge University Press:  31 January 2011

R. Petrović
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Yugoslavia
Dj. Janacković
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Yugoslavia
S. Zec
Affiliation:
The Vinča Institute of Nuclear Sciences, Belgrade, Yugoslavia
S. Drmanić
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Yugoslavia
Lj. Kostić-Gvozdenović
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Yugoslavia
Get access

Abstract

A triphasic cordierite-type gel was prepared from silica sol, boehmite sol, and an aqueous solution of Mg(NO3)2 · 6H2O. The silica sol was obtained from water glass by the ion exchange method, while boehmite sol was obtained by peptization of freshly prepared Al(OH)3. Phase transformations occurring in the gel were studied by differential scanning calorimetry, x-ray diffractometry, and Fourier transform infrared spectrometry. Spinel was observed to crystallize from the gel prior to cristobalite; their reaction subsequently yielded α-cordierite. At higher temperatures, α-cordierite transformed into modulated β-cordierite. Kinetic parameters of α-cordierite formation and α-cordierite to modulated β-cordierite transformation were determined by differential scanning calorimetry under nonisothermal conditions. Formation of a-cordierite was found to be a diffusion-controlled process, with an overall activation energy of Ea = 1242 ± 66 kJ/mol. During the α → β-cordierite transformation, a modulated phase was formed by surface transformation of α-cordierite. The overall activation energy for the formation of the modulated structure is Ea = 583±77 kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barnier, J.C., Powder Metall. Int. 18, 165 (1986).Google Scholar
2.Predecki, P., Hass, J., Faber, J. Jr, and Hitterman, R., J. Am. Ceram. Soc. 70, 175 (1987).CrossRefGoogle Scholar
3.Tecilazić-Stevanović, M., Janaćković, T., Kostić-Gvozdenović, Lj., and Ćirjaković, R., Indust. Ceram. 13, 31 (1993).Google Scholar
4.Kostić-Gvozdenović, Lj., Janaćković, T., Tecilazić-Stevanović, M., and Janaćković, Dj., in Electroceramics and Ceramics for Special Applications. edited by Ziegler, G. and Hausner, H. (Proc. II Euro. Ceram. Soc., Conf., Deutsche Keramische Gesellschaft e.V., Frankfurt, Germany 1993), Vol. III, p. 2431.Google Scholar
5.Ćirjaković, R., Milonjić, S., and Kostić-Gvozdenović, Lj., in Processing of Ceramics, (Proc. III Euro. Ceram. Soc. Conf.), edited by Duran, P., Fernandez, J.F. (Proc. III Euro. Ceram. Soc. Conf., Faenza Editrice Iberica, S.L., Madrid, Spain 1993), Vol. I, p. 273.Google Scholar
6.Janaćković, Dj., Jokanović, V., Zivković, Lj., Kostić-Gvozdenović, Lj., and Uskoković, D., in Ceramics: Charting the Future, Advances in Science and Technology edited by Vincenzini, P. (Proc. VIII Cimtec. Conf., Techna srl, Faenza, Italy, 1995), p. 1229.Google Scholar
7.Janaćković, Dj., Jokanović, V., Kostić-Gvozdenović, Lj., Zec, S., and Uskoković, D., J. Mater. Sci. 32, 163, (1997).CrossRefGoogle Scholar
8.Suzuki, H., Ota, K., and Saito, H., Yogyo-Kyokai-Shi, (J. Ceram. Soc. Jpn.) 95, 163 (1987).Google Scholar
9.Karagedov, G., Feltz, A., and Neidnicht, B., J. Mater. Sci. 26, 6396 (1991).CrossRefGoogle Scholar
10.Maeda, K., Mizukami, F., Miyashita, S., and Niwa, S., Toba, M., J. Chem. Soc., Chem. Commun. 18, 1268 (1990).CrossRefGoogle Scholar
11.Dauger, A., Lecomite, A., Vesteghem, H., Guinebretiere, R., and Fargeot, D., J. Appl. Cryst. 24, 765 (1991).CrossRefGoogle Scholar
12.Lim, B.C. and Jang, H.M., J. Mater. Res. 6, 2427 (1991).CrossRefGoogle Scholar
13.Okuyama, M., Fukui, T., and Sakurai, C., J. Am. Ceram. Soc. 75, 153 (1992).CrossRefGoogle Scholar
14.Bonhomme-Coury, L., Babonneau, F., and J. Livage. Chem. Mater. 5, 323 (1993).CrossRefGoogle Scholar
15.Kazakos, A.M., Komarneni, S., and Roy, R., J. Mater. Res. 5, 1095 (1990).CrossRefGoogle Scholar
16.Jang, H.M. and Lim, B.C., J. Mater. Res 9, 2627 (1994).CrossRefGoogle Scholar
17.Awano, M., Takagi, H., and Kuwahara, Y., J. Am. Ceram. Soc. 75, 2535 (1992).CrossRefGoogle Scholar
18.Awano, M. and Takagi, H., J. Mater. Sci. 29, 412 (1994).CrossRefGoogle Scholar
19.Evans, D.L., Fischer, G.R., Geiger, J.E. and Martin, F.W., J. Am. Ceram. Soc. 63, 629 (1980).CrossRefGoogle Scholar
20.Agrawal, D.K. and Stubican, V.S., J. Am. Ceram. Soc. 69, 847 (1986).CrossRefGoogle Scholar
21.Suzuki, H., Ota, K., Saito, H., Yogyo-Kyokai-Shi, (J. Ceram. Soc. Jpn.) 95, 170 (1987).Google Scholar
22.El Chahal, L., Werckmann, J., Pourroy, G., and Esnouf, C., J. Cryst. Growth 15, 699 (1995).Google Scholar
23.Milonjić, S.K., Ph.D. Thesis, Faculty of Sciences, University of Belgrade, Belgrade, Yugoslavia, (1981).Google Scholar
24.Sears, G.W. Jr., Anal. Chem. 28, 1956 (1981).Google Scholar
25.Langer, K., Schreyer, W., Am. Mineral. 54, 1442 (1969).Google Scholar
26.Nyquist, R.A., Kagel, R.O., Infrared Spectra of Inorganic Compounds (Academic Press, New York, 1971), pp. 37, 116, 188.Google Scholar
27.Putnis, A. and Bish, D.L., Am. Mineral. 68, 60 (1983).Google Scholar
28.Güttler, B., Salje, E., and Putnis, A., Phys. Chem. Minerals 16, 365 (1989).Google Scholar
29.Redfern, S.A.T., Salje, E., Maresch, W., and Schreyer, W., Am. Mineral. 74, 1293 (1989).Google Scholar
30.Gouby, I., Thomas, P., Mercurio, D., Merle-Méjean, T., and B. Frit. Mater. Res. Bull. 30, 593 (1995).CrossRefGoogle Scholar
31.Fahrenholtz, W.G. and Smith, D.M., J. Am. Ceram. Soc. 76, 433 (1993).CrossRefGoogle Scholar
32.Fyfe, C.A., Gobbi, G.C., and Putnis, A.. J. Am. Chem. Soc. 108, 3218 (1983).CrossRefGoogle Scholar
33.Yinnon, H. and Uhlmann, D.R., J. Non-Cryst. Solids 54, 253 (1983).CrossRefGoogle Scholar
34.Matusita, K., Sakka, S., Physics Chem. Glasses. 20, 81 (1979).Google Scholar
35.Donald, I.W., J. Mater. Sci. 30, 904 (1995).CrossRefGoogle Scholar
36.McFarlane, D.R., M. Fragoulis. Phys. Chem. Glasses 27, 228 (1986).Google Scholar