Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:01:04.189Z Has data issue: false hasContentIssue false

The photocathodic behavior of hierarchical ZnO/hematite hetero nanoarchitectures

Published online by Cambridge University Press:  07 April 2016

Debajeet K. Bora*
Affiliation:
Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
*
a) Address all correspondence to this author. e-mail: Debajeet1@hotmail.com, Debajeet.bora@empa.ch
Get access

Abstract

The photocathodic current density of ZnO/hematite hetero nanoarchitectures electrode has been reported in the current investigation. The electrode was obtained with a cheap and two-step hydrothermal functionalization of pristine silicon doped hematite film. The optical, structural, and morphological properties of the electrodes have been studied in detail and it is found that the ZnO functionalization of hematite changes its crystallographic properties by decreasing the Bragg peak intensity ratio for (104) planes. The morphology obtained in this case is unique in the sense that it does not cover the original hematite film and is formed in an isolated manner. Finally, employing a qualitative energy band gap model for mixed metal oxides energy levels has identified the photocathodic properties of the electrode. Here it is found that the photocathodic properties of the electrode are much higher when an electron transfer takes place from the conduction band of ZnO into the electrolyte while hole generated in ZnO is transferred back to hematite but it also degrades the structures after running photoanodic current density sweep. That points to the decrease of water oxidation behavior of hematite in conjunction with ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, I.A., and Augustynski, J.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 1368513692 (2005).Google Scholar
Watanabe, A. and Kozuka, H.: Photoanodic properties of Sol–Gel-derived Fe2O3 thin films containing dispersed gold and silver particles. J. Phys. Chem. B 107, 1271312720 (2003).CrossRefGoogle Scholar
Duret, A. and Gratzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 1718417191 (2005).Google Scholar
Tahir, A.A., Upul Wijayantha, K.G., Saremi-Yarahmadi, S., Mazhar, M., and Mckee, V.: Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem. Mater. 21, 37633772 (2009).CrossRefGoogle Scholar
Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 60866087 (2009).Google Scholar
An, Z., Zhang, J., Pan, S., and Yu, F.: Facile template-free synthesis and characterization of elliptic α-Fe2O3 superstructures. J. Phys. Chem. C 113, 80928096 (2009).Google Scholar
Wen, X., Wang, S., Ding, Y., Lin Wang, Z., and Yang, S.: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215220 (2005).Google Scholar
Jia, C., Sun, L., Yan, Z., You, L., Luo, F., Han, X., Pang, Y., Zhang, Z., and Yan, C.: Single-crystalline iron oxide nanotubes. Angew. Chem., Int. Ed. 44, 43284333 (2005).CrossRefGoogle ScholarPubMed
Chueh, Y.L., Lai, M.W., Liang, Q., Chou, L.J., and Wang, Z.L.: Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor -solid process. Adv. Funct. Mater. 16, 22432251 (2006).Google Scholar
Tang, B., Wang, G., Zhou, L., Ge, J., and Cui, L.: Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 45, 51965200 (2006).Google Scholar
Zhu, L.P., Xiao, H.M., Liu, X.M., and Fu, S.Y.: Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J. Mater. Chem. 16, 17941797 (2006).Google Scholar
Cao, M., Liu, T., Gao, S., Sun, G., Wu, X., Hu, C., and Wang, Z.L.: Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew. Chem., Int. Ed. 44, 41974201 (2005).Google Scholar
Vayssieres, L.: An aqueous solution approach to advanced metal oxide arrays on substrates. Appl. Phys. A: Mater. Sci. Process. 89(20), 18 (2007).CrossRefGoogle Scholar
Klingshirn, C.: Zno: Material, physics and applications. ChemPhysChem 8, 782 (2007).Google Scholar
Tributsch, H. and Calvin, M.: Electrochemistry of excited molecules: Photo-electrochemical reactions of chlorophylls. Photochem. Photobiol. 14, 95 (1971).Google Scholar
Yang, X., Wolcott, A., Wang, G., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., and Li, Y.: Nitrogen-doped ZnO nanowire arrays for photoelectrochemical Water Splitting. Nano Lett. 9, 2331 (2009).CrossRefGoogle ScholarPubMed
Guo, M., Diao, P., and Cai, S.: Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249, 71 (2005).Google Scholar
Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y., and Zhang, J.Z.: Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19, 1849 (2009).Google Scholar
Srikant, V. and Clarkea, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998).CrossRefGoogle Scholar
Yan, Y., Ahn, K.S., Shet, S., Deutsch, T., Huda, M., Wei, S.H., Turner, J., and Al-Jassim, M.M.: Band gap reduction of ZnO for photoelectrochemical splitting of water. Proc. SPIE 6650, 66500H (2007).CrossRefGoogle Scholar
Mansoor, M.A., Ehsan, M.A., McKee, V., Huang, N., Ebadi, M., Arifin, Z., Basiruna, W.J., and Mazhar, M.: Hexagonal structured Zn(1−x)Cd x O solid solution thin films: synthesis, characterization and applications in photoelectrochemical water splitting. J. Mater. Chem. A 1, 5284 (2013).Google Scholar
Shet, S., Ahn, K., Deutsch, T., Wang, H., Ravindra, N., Yan, Y., Turner, J., and Al-Jassim, M.: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J. Mater. Res. 25, 69 (2010).Google Scholar
Dom, R., Baby, L.R., Kim, H.G., and Borse, P.H.: Enhanced solar photoelectrochemical conversion efficiency of ZnO: Cu electrodes for water-splitting application. Int. J. Photoenergy 2013, 1 (2013).Google Scholar
Chen, H.M., Chen, C.K., Chang, Y., Tsai, C., Liu, R., Hu, S., Chang, W., and Chen, K.: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem., Int. Ed. 49, 5966 (2010).Google Scholar
Keis, K., Magnusson, E., Lindström, H., Lindquist, S., and Hagfeldt, A.: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51 (2002).Google Scholar
Bahadur, L. and Kushwaha, S.: Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells. Appl. Phys. A: Mater. Sci. Process. 109, 655 (2012).Google Scholar
Nonomura, K., Yoshida, T., Schlettwein, D., and Minoura, H.: One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochim. Acta 48, 3071 (2003).CrossRefGoogle Scholar
Wei, Y., Ke, L., Kong, J., Liu, H., Jiao, Z., Lu, X., Du, H., and Sun, X.W.: Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23, 235401 (2012).Google Scholar
Schrier, J., Demchenko, D.O., and Wang, L.: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 23772382 (2007).Google Scholar
Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
Bora, D.K. and Braun, A.: Solution processed transparent nanoparticulate ZnO thin film electrode for photoelectrochemical water oxidation. RSC Adv. 4, 2356223570 (2014).CrossRefGoogle Scholar
Saarenpää, H., Niemi, T., Tukiainen, A., Lemmetyinen, H., and Tkachenko, N.: Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol. Energ. Mater. Sol. Cells 94, 3791383 (2010).CrossRefGoogle Scholar
Achouri, F., Corbel, S., Aboulaich, A., Balan, L., Ghrabi, A., Said, M.B., and Schneider, R.: Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 75, 10811087 (2014).Google Scholar
Janet, C.M., Navaladian, S., Viswanathan, B., Varadarajan, T.K., and Viswanath, R.P.: Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction. J. Phys. Chem. C 114, 26222632 (2010).Google Scholar
Guo, M., Diao, P., and Cai, S.: Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249, 7175 (2005).CrossRefGoogle Scholar
Guo, M., Diao, P., Wang, X., and Cai, S.: The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem. 178, 32103215 (2005).Google Scholar
Bora, D.K.: Fabrication of silicon doped hematite photoelectrode with enhanced photocurrent density via solution processing of an in-situ TEOS modified precursor. Mater. Sci. Semicond. Process. 31, 728738 (2015).Google Scholar
Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E.C.: Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23, 20512061 (2011).CrossRefGoogle Scholar
Bora, D.K., Braun, A., Steifel, M., Erni, R., Müller, U., Döbli, M., and Constable, E.C.: Hematite -NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys. Chem. Chem. Phys. 15, 1264812659 (2013).Google Scholar
Samanta, P.K., Patra, S.K., and Chaudhuri, P.R.: violet emission from flower-like bundle of ZnO nanosheets. Phys. E 41, 664 (2009).Google Scholar
Nakamura, T. and Kurokawa, H.: Preparation of monodispersed haematite particles by two-step hydrolysis of ferric chloride aqueous solutions. J. Mater. Sci. 30, 471 (1995).Google Scholar
Warschkow, O., Ellis, D.E., Hwang, J., Mansourian-Hadavi, N., and Mason, T.O.: Defects and charge transport near the hematite (0001) surface: An atomistic study of oxygen vacancies. J. Am. Ceram. Soc. 85, 213220 (2002).CrossRefGoogle Scholar
Zhang, X., Li, H., Wang, S., Fan, F.F., and Bard, A.J.: Improvement of hematite as photocatalyst by doping with tantalum. J. Phys. Chem. C 118(30), 1684216850 (2014).CrossRefGoogle Scholar
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638641 (2008).Google Scholar
Thankappan, A., Hari, M., Mathew, S., Ani Joseph, S., Erni, R., Bora, D.K., Braun, A., and Nampoori, V.P.N.: Synthesis of monocrystalline zinc oxide microrods by wet chemical method for light confinement applications. Phys. E 44, 21182123 (2012).Google Scholar
Rajeswar, K.: Fundamentals of semiconductors electrochemsitry and photoelectrochemistry. In Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry, Vol. 6, Bard, A.J., Stratmann, M. and Licht, S., eds. (Wiley, Germany, 2002).Google Scholar
Morisaki, J., Hariya, M., and Yazawa, K.: Anomalous photoresponse of n–TiO2 electrode in a photoelectrochemical cell. Appl. Phys. Lett. 30, 7 (1977).CrossRefGoogle Scholar
Khan, S.U.M. and Om Bockris, J.: A model for electron transfer at the illuminated p-type semiconductor-solution interface. J. Phys. Chem. 88, 25042515 (1984).Google Scholar
Uosaki, K. and Kita, H.: Mechanistic study of photoelectrochemical reactions at a p–GaP electrode. J. Electrochem. Soc. 128, 2154 (1981).Google Scholar
Wang, H., Wang, T., Wang, X., Liu, R., Wang, B., Wang, H., Xu, Y., Zhang, J., and Duan, J.: Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment. J. Mater. Chem. 22, 1253212537 (2012).CrossRefGoogle Scholar
Supplementary material: File

Bora supplementary material

Supporting Information

Download Bora supplementary material(File)
File 409.9 KB