Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:18:48.429Z Has data issue: false hasContentIssue false

Photoelectrochemical properties and crystalline structure change of Sb-doped TiO2 thin films prepared by the sol-gel method

Published online by Cambridge University Press:  01 November 2004

Zongmin Bei
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
Dasen Ren*
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
Xiaoli Cui
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
Jie Shen
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
Xiliang Yang
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
Zhuangjian Zhang
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: senrd@vip.sina.com
Get access

Abstract

Ti1−XSbXO2 samples were obtained from dip-coating sol-gel method and a subsequent anneal at 450 °C. They had an average crystallite size of 13.3–20 nm. Cyclic voltammograms taken under ultraviolet (UV) and Xe lamp illumination in a 0.5 M Na2SO4 electrolyte showed that the Sb-doped samples had greater photocurrent densities than pure titania electrode, with an optimal Sb concentration of 0.2%. Oxidative peaks were observed in the cyclic voltammograms obtained in the dark after certain exposure duration to UV light. X-ray diffraction patterns and Raman spectra show a phase transformation from brookite to anatase in the samples with Sb concentration up to 0.2%. Ti4+ ions were substituted by Sb to form the anatase structure of Sb–O–Ti, improving the crystallization efficiency. The Sb–Sb bonds were formed due to the introduction of excessive Sb atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T.: Light induced amphiphilic surface. Nature 388, 431 (1997).CrossRefGoogle Scholar
2O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
3Negishi, N., Takeuchi, K. and Ibusuki, T.: The surface structure of titanium dioxide thin film photocatalyst. Appl. Surf. Sci. 121, 417 (1997).CrossRefGoogle Scholar
4Sun, Z-S., Chen, Y-X., Ke, Q., Yang, Y. and Yuan, J.: Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J. Photochem. Photobio. A 149, 169 (2002).CrossRefGoogle Scholar
5Li, X-Z., Li, F-B., Yang, C-L. and Ge, W-K.: Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobio. A 141, 209 (2001).CrossRefGoogle Scholar
6Li, F-B. and Li, X-Z.: The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48, 1103 (2002).CrossRefGoogle ScholarPubMed
7Traversa, E., di Vona, M.L., Nunziante, P., Licoccia, S., Yoon, J-W., Sasaki, T. and Koshizaki, N.: Photoelectrochemical properties of sol-gel processed Ag-TiO2 nanocomposite thin films. J. Sol-Gel Sci. Technol. 22, 115 (2001).CrossRefGoogle Scholar
8Li, X-Z. and Li, F-B.: Surface characterization and photoreactivity of innovative Ti/TiO2 and Ti/Pt-TiO2 mesh photoelectrodes. J. Appl. Electrochem. 32, 203 (2002).CrossRefGoogle Scholar
9Atashbar, M.Z., Sun, H-T., Gong, B., Wlodarski, W. and Lamb, R.: XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films 326, 238 (1998).CrossRefGoogle Scholar
10Pleskov, Yu.V., Kraitsberg, A.M., Kolbasov, G.Ya., Taranenko, N.I. and Lipyavka, V.G.: Mixed oxide of ruthenium and titanium as a protective film material for silicon anodes in photoelectrochemical cells. Solar Energy Mater. 22, 119 (1991).CrossRefGoogle Scholar
11Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
12Varghese, O.K., Gong, D-W., Paulose, M., Grimes, C.A. and Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
13Gong, D-W., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W-C. and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
14Wang, X-P., Yu, Y., Hu, X-F. and Gao, L.: Hydrophilicity of TiO2 films prepared by liquid phase deposition. Thin Solid Films 371, 148 (2000).CrossRefGoogle Scholar
15Yu, J-C., Lin, J., Lo, D. and Lam, S.K.: Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2. Langmuir 16, 7304 (2000).CrossRefGoogle Scholar
16Zheng, M-P., Jin, Y-P., Jin, G-L., Gu, M-Y. and Tao, P.: Photochromism of titania sol and gel. Acta Chim. Sinica 59, 142 (2001).Google Scholar
17Ren, D-S., Cui, X-L., Shen, J., Zhang, Q., Yang, X-L., Zhang, Z-J. and Lu, M.: Study on the superhydrophilicity of the SiO2-TiO2 thin films prepared by sol-gel method at room temperature. J. Sol-Gel Sci. Technol. 29, 131 (2004).CrossRefGoogle Scholar
18Cui, X-L. and Jiang, Z-Y.: Cyclic voltammetric and ac impedance behavior of TiO2 electrodes under UV illumination. J. Chin. Chem. Soc. 50, 1003 (2003).CrossRefGoogle Scholar
19Cui, X-L. and Jiang, Z-Y.: Electrochemical behavior of ITO/TiO2 electrode under UV illumination. Acta Phys. Chim. Sin. 18, 1014 (2002).Google Scholar
20Cui, X-L., Ren, D-S., Wo, S-T., Shen, J., Yang, X-L. and Zhang, Z-J.: Two photoelectrochemical processes for TiO2 electrode under UV illumination. Chin. J. Chem. 21, 1001 (2003).Google Scholar
21Cui, X-L., Wo, S-T., Ren, D-S., Shen, J., Yang, X-L. and Zhang, Z-J.: Photo-induced hydrophilicity and cyclic voltammetric behavior of TiO2 thin film under ultraviolet illumination with different wavelengths. Acta Chim. Sinica 61, 1872 (2003).Google Scholar
22Zhang, W-F., He, Y-L., Zhang, M-S., Yin, Z. and Chen, Q.: Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33, 912 (2000).CrossRefGoogle Scholar
23Hu, Y., Tsai, H-L. and Huang, C-L.: Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. J. Eur. Ceram. Soc. 23, 691 (2003).CrossRefGoogle Scholar
24Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A. and Seakins, J.M.: The Raman spectrum of brookite, TiO2 (PBCA, Z=8). J. Raman Spectrosc. 26, 57 (1995).CrossRefGoogle Scholar
25Anushree, R., Komatsu, M., Matsuishi, K. and Onari, S.: Raman spectroscopic studies on Sb nanoparticles in SiO2 matrix prepared by rf-cosputtering technique. J. Phys. Chem. Solids 58, 741 (1997).Google Scholar
26Guerreto-Perez, M.O., Fierro, J.L.G., Vicente, M.A. and Banares, M.A.: Effect of Sb/V ratio and of Sb+V coverage on the molecular structure and activity of alumina-supported Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile. J. Catal. 206, 339 (2002).CrossRefGoogle Scholar
27Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K.: Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization. J. Phys. Chem. B 105, 3023 (2001).CrossRefGoogle Scholar
28Ren, D-S., Bei, Z-M., Huang, L., Shen, J., Cui, X-L., Yang, X-L. and Zhang, Z-J.: The effect of dopant Sb on the superhydrophilicity and the microstructure of the nanoscale TiO2 thin film. Acta Phys. Chim. Sin. 20, 414 (2004).Google Scholar
29Sun, R-D., Akira, N., Fujishima, A., Watanabe, T. and Hashimoto, K.: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105, 1984 (2001).CrossRefGoogle Scholar
30Hinrichs, K., Power, J.R., Esser, N. and Richter, W.: Raman spectroscopy of surface phonons on Sb-terminated Si (001). Appl. Surf. Sci. 166, 185 (2000).CrossRefGoogle Scholar
31Wang, R., Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K.: Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103, 2188 (1999).CrossRefGoogle Scholar
32Ichikawa, S. and Doi, R.: Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics. Thin Solid Films 292, 130 (1997).CrossRefGoogle Scholar