No CrossRef data available.
Published online by Cambridge University Press: 01 July 2006
A novel red emitting phosphor, Eu3+-doped Ba2SnO4, has been synthesized by solid-state reaction. Photoluminescence (PL) excitation spectrum of Ba2Sn0.925Eu0.075O4 shows the strongest broad band from 220 to 280 nm due to the charge transfer (CT) band of Eu3+–O2−, and the band centered at 180 nm could be caused by the CT band of Ba2+–O2−. The band (110–130 nm) could be attributed to SnO68− octahedron band absorption. It is found that under 254 nm excitation, Ba2Sn1−xEuxO4 (0.025 ≤ x ≤ 0.125) exhibits a strong emission at around 592 nm, and with the increase in Eu3+, the phosphors present orange to red luminescence due to the decreasing of the site symmetry of Eu3+. The maximum PL intensity has been obtained for 7.5 mol% concentration of Eu3+ in Ba2SnO4. On the other hand, under 147 nm excitation, the phosphors do not emit effectively because of inefficient absorption in vacuum ultraviolet (VUV) region.